52 research outputs found

    HER2 induced EMT and tumorigenicity in breast epithelial progenitor cells is inhibited by coexpression of EGFR.

    Get PDF
    To access publisher's full text version of this article, please click on the hyperlink in Additional Links field or click on the hyperlink at the top of the page marked Files. This article is open access.The members of the epidermal growth factor receptor (EGFR) kinase family are important players in breast morphogenesis and cancer. EGFR2/HER2 and EGFR expression have a prognostic value in certain subtypes of breast cancer such as HER2-amplified, basal-like and luminal type B. Many clinically approved small molecular inhibitors and monoclonal antibodies have been designed to target HER2, EGFR or both. There is, however, still limited knowledge on how the two receptors are expressed in normal breast epithelium, what effects they have on cellular differentiation and how they participate in neoplastic transformation. D492 is a breast epithelial cell line with stem cell properties that can undergo epithelial to mesenchyme transition (EMT), generate luminal- and myoepithelial cells and form complex branching structures in three-dimensional (3D) culture. Here, we show that overexpression of HER2 in D492 (D492(HER2)) resulted in EMT, loss of contact growth inhibition and increased oncogenic potential in vivo. HER2 overexpression, furthermore, inhibited endogenous EGFR expression. Re-introducing EGFR in D492(HER2) (D492(HER2/EGFR)) partially reversed the mesenchymal state of the cells, as an epithelial phenotype reappeared both in 3D cultures and in vivo. The D492(HER2/EGFR) xenografts grow slower than the D492(HER2) tumors, while overexpression of EGFR alone (D492(EGFR)) was not oncogenic in vivo. Consistent with the EGFR-mediated epithelial phenotype, overexpression of EGFR drove the cells toward a myoepithelial phenotype in 3D culture. The effect of two clinically approved anti-HER2 and EGFR therapies, trastuzumab and cetuximab, was tested alone and in combination on D492(HER2) xenografts. While trastuzumab had a growth inhibitory effect compared with untreated control, the effect of cetuximab was limited. When administered in combination, the growth inhibitory effect of trastuzumab was less pronounced. Collectively, our data indicate that in HER2-overexpressing D492 cells, EGFR can behave as a tumor suppressor, by pushing the cells towards epithelial differentiation.Landspitali University Hospital Science Fund, University of Iceland Research Fund, Science and Technology Policy Council Research Fund and Grant of Excellence, ‘Göngum saman’, a supporting group for breast cancer research in Iceland

    LMTK3 confers chemo-resistance in breast cancer

    Get PDF
    Lemur tyrosine kinase 3 (LMTK3) is an oncogenic kinase that is involved in different types of cancer (breast, lung, gastric, colorectal) and biological processes including proliferation, invasion, migration, chromatin remodeling as well as innate and acquired endocrine resistance. However, the role of LMTK3 in response to cytotoxic chemotherapy has not been investigated thus far. Using both 2D and 3D tissue culture models, we found that overexpression of LMTK3 decreased the sensitivity of breast cancer cell lines to cytotoxic (doxorubicin) treatment. In a mouse model we showed that ectopic overexpression of LMTK3 decreases the efficacy of doxorubicin in reducing tumor growth. Interestingly, breast cancer cells overexpressing LMTK3 delayed the generation of double strand breaks (DSBs) after exposure to doxorubicin, as measured by the formation of γH2AX foci. This effect was at least partly mediated by decreased activity of ataxia-telangiectasia mutated kinase (ATM) as indicated by its reduced phosphorylation levels. In addition, our RNA-seq analyses showed that doxorubicin differentially regulated the expression of over 700 genes depending on LMTK3 protein expression levels. Furthermore, these genes were found to promote DNA repair, cell viability and tumorigenesis processes / pathways in LMTK3-overexpressing MCF7 cells. In human cancers, immunohistochemistry staining of LMTK3 in pre- and postchemotherapy breast tumor pairs from four separate clinical cohorts revealed a significant increase of LMTK3 following both doxorubicin and docetaxel based chemotherapy. In aggregate, our findings show for the first time a contribution of LMTK3 in cytotoxic drug resistance in breast cancer

    Fungal G-protein-coupled receptors::mediators of pathogenesis and targets for disease control

    Get PDF
    G-protein signalling pathways are involved in sensing the environment, enabling fungi to coordinate cell function, metabolism and development with their surroundings, thereby promoting their survival, propagation and virulence. G-protein-coupled receptors (GPCRs) are the largest class of cell surface receptors in fungi. Despite the apparent importance of GPCR signalling to fungal biology and virulence, relatively few GPCR–G-protein interactions, and even fewer receptor-binding ligands, have been identified. Approximately 40% of current pharmaceuticals target human GPCRs, due to their cell surface location and central role in cell signalling. Fungal GPCRs do not belong to any of the mammalian receptor classes, making them druggable targets for antifungal development. This Review Article evaluates developments in our understanding of fungal GPCR-mediated signalling, while substantiating the rationale for considering these receptors as potential antifungal targets. The need for insights into the structure–function relationship of receptor–ligand interactions is highlighted, which could facilitate the development of receptor-interfering compounds that could be used in disease control

    Fractionation of tomato fruit chromoplasts

    No full text
    Chromoplast differentiation involves an active synthesis of carotenoids associated with the remodeling of the preexisting plastid membrane systems to form specialized structures involved in the sequestration and storage of the synthesized carotenoids. These subplastidial structures show remarkable morphological differences and seem to be adapted to the accumulation of particular carotenoids in some plant species and organs. At present, very little is known about chromoplast biogenesis and the role of the different suborganellar structures in the synthesis and storage of carotenoids. The combination of classical fractionation methods with the use of biochemical and -omics techniques represents an attractive approach to unravel novel aspects related with the biochemical and cellular mechanisms underlying the biogenesis of the structures involved in the biosynthesis and storage of carotenoids during chromoplast differentiation. Here we describe a combined protocol for the isolation, lysis and fractionation of tomato fruit chromoplast. The fractions obtained are suitable for metabolomics and proteomics analysis.We acknowledge the financial support of AGAUR-Generalitat de Catalunya (Grant 2017 SGR 710), the CERCA Programme of the Generalitat de Catalunya and the Severo Ochoa Programme for Centres of Excellence in R&D 2016–2019 to CRAG (SEV-2015-0533). AB is member of the Spanish Carotenoid Network (CaRed) funded by the Spanish Ministry of Economy and Competitiveness (Grants BIO2015-71703-REDT and BIO2017-90877-REDT).Peer reviewe
    corecore