62 research outputs found

    To Be or Not to Be a Flatworm: The Acoel Controversy

    Get PDF
    Since first described, acoels were considered members of the flatworms (Platyhelminthes). However, no clear synapomorphies among the three large flatworm taxa - the Catenulida, the Acoelomorpha and the Rhabditophora - have been characterized to date. Molecular phylogenies, on the other hand, commonly positioned acoels separate from other flatworms. Accordingly, our own multi-locus phylogenetic analysis using 43 genes and 23 animal species places the acoel flatworm Isodiametra pulchra at the base of all Bilateria, distant from other flatworms. By contrast, novel data on the distribution and proliferation of stem cells and the specific mode of epidermal replacement constitute a strong synapomorphy for the Acoela plus the major group of flatworms, the Rhabditophora. The expression of a piwi-like gene not only in gonadal, but also in adult somatic stem cells is another unique feature among bilaterians. These two independent stem-cell-related characters put the Acoela into the Platyhelminthes-Lophotrochozoa clade and account for the most parsimonious evolutionary explanation of epidermal cell renewal in the Bilateria. Most available multigene analyses produce conflicting results regarding the position of the acoels in the tree of life. Given these phylogenomic conflicts and the contradiction of developmental and morphological data with phylogenomic results, the monophyly of the phylum Platyhelminthes and the position of the Acoela remain unresolved. By these data, both the inclusion of Acoela within Platyhelminthes, and their separation from flatworms as basal bilaterians are well-supported alternatives

    Towards the prevention of acute lung injury: a population based cohort study protocol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute lung injury (ALI) is an example of a critical care syndrome with limited treatment options once the condition is fully established. Despite improved understanding of pathophysiology of ALI, the clinical impact has been limited to improvements in supportive treatment. On the other hand, little has been done on the prevention of ALI. Olmsted County, MN, geographically isolated from other urban areas offers the opportunity to study clinical pathogenesis of ALI in a search for potential prevention targets.</p> <p>Methods/Design</p> <p>In this population-based observational cohort study, the investigators identify patients at high risk of ALI using the prediction model applied within the first six hours of hospital admission. Using a validated system-wide electronic surveillance, Olmsted County patients at risk are followed until ALI, death or hospital discharge. Detailed in-hospital (second hit) exposures and meaningful short and long term outcomes (quality-adjusted survival) are compared between ALI cases and high risk controls matched by age, gender and probability of developing ALI. Time sensitive biospecimens are collected for collaborative research studies. Nested case control comparison of 500 patients who developed ALI with 500 matched controls will provide an adequate power to determine significant differences in common hospital exposures and outcomes between the two groups.</p> <p>Discussion</p> <p>This population-based observational cohort study will identify patients at high risk early in the course of disease, the burden of ALI in the community, and the potential targets for future prevention trials.</p

    Difficulties when Assessing Birdsong Learning Programmes under Field Conditions: A Re-Evaluation of Song Repertoire Flexibility in the Great Tit

    Get PDF
    There is a remarkable diversity of song-learning strategies in songbirds. Establishing whether a species is closed- or open-ended is important to be able to interpret functional and evolutionary consequences of variation in repertoire size. Most of our knowledge regarding the timing of vocal learning is based on laboratory studies, despite the fact that these may not always replicate the complex ecological and social interactions experienced by birds in the wild. Given that field studies cannot provide the experimental control of laboratory studies, it may not be surprising that species such as the great tit that were initially assumed to be closed-ended learners have later been suggested to be open-ended learners. By using an established colour-ringed population, by following a standardized recording protocol, and by taking into account the species' song ecology (using only recordings obtained during peak of singing at dawn), we replicated two previous studies to assess song repertoire learning and flexibility in adult wild great tits elicited by social interactions. First, we performed a playback experiment to test repertoire plasticity elicited by novel versus own songs. Additionally, in a longitudinal study, we followed 30 males in two consecutive years and analysed whether new neighbours influenced any change in the repertoire. Contrary to the previous studies, song repertoire size and composition were found to be highly repeatable both between years and after confrontation with a novel song. Our results suggest that great tits are closed-ended learners and that their song repertoire probably does not change during adulthood. Methodological differences that may have led to an underestimation of the repertoires or population differences may explain the discrepancy in results with previous studies. We argue that a rigorous and standardized assessment of the repertoire is essential when studying age- or playback-induced changes in repertoire size and composition under field conditions

    The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis)

    Get PDF
    Background: Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex(MHC/MH) is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sexrelated differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results: Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIb locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIb allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIb locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions: The high variation found at the seahorse MHIIb gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation, providing powerful comparative models for understanding the relative importance of selective factors in shaping patterns of genetic variation

    Atypical birdsong and artificial languages provide insights into how communication systems are shaped by learning, use and transmission

    Get PDF
    In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social–cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language
    • 

    corecore