96 research outputs found

    A Genome-Wide Investigation of SNPs and CNVs in Schizophrenia

    Get PDF
    We report a genome-wide assessment of single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) in schizophrenia. We investigated SNPs using 871 patients and 863 controls, following up the top hits in four independent cohorts comprising 1,460 patients and 12,995 controls, all of European origin. We found no genome-wide significant associations, nor could we provide support for any previously reported candidate gene or genome-wide associations. We went on to examine CNVs using a subset of 1,013 cases and 1,084 controls of European ancestry, and a further set of 60 cases and 64 controls of African ancestry. We found that eight cases and zero controls carried deletions greater than 2 Mb, of which two, at 8p22 and 16p13.11-p12.4, are newly reported here. A further evaluation of 1,378 controls identified no deletions greater than 2 Mb, suggesting a high prior probability of disease involvement when such deletions are observed in cases. We also provide further evidence for some smaller, previously reported, schizophrenia-associated CNVs, such as those in NRXN1 and APBA2. We could not provide strong support for the hypothesis that schizophrenia patients have a significantly greater “load” of large (>100 kb), rare CNVs, nor could we find common CNVs that associate with schizophrenia. Finally, we did not provide support for the suggestion that schizophrenia-associated CNVs may preferentially disrupt genes in neurodevelopmental pathways. Collectively, these analyses provide the first integrated study of SNPs and CNVs in schizophrenia and support the emerging view that rare deleterious variants may be more important in schizophrenia predisposition than common polymorphisms. While our analyses do not suggest that implicated CNVs impinge on particular key pathways, we do support the contribution of specific genomic regions in schizophrenia, presumably due to recurrent mutation. On balance, these data suggest that very few schizophrenia patients share identical genomic causation, potentially complicating efforts to personalize treatment regimens

    APOE ε4 lowers age at onset and is a high risk factor for Alzheimer's disease; A case control study from central Norway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The objective of this study was to analyze factors influencing the risk and timing of Alzheimer's disease (AD) in central Norway. The <it>APOE </it>ε4 allele is the only consistently identified risk factor for late onset Alzheimer's disease (LOAD). We have described the allele frequencies of the apolipoprotein E gene (<it>APOE</it>) in a large population of patients with AD compared to the frequencies in a cognitively-normal control group, and estimated the effect of the <it>APOE </it>ε4 allele on the risk and the age at onset of AD in this population.</p> <p>Methods</p> <p>376 patients diagnosed with AD and 561 cognitively-normal control individuals with no known first degree relatives with dementia were genotyped for the <it>APOE </it>alleles. Allele frequencies and genotypes in patients and control individuals were compared. Odds Ratio for developing AD in different genotypes was calculated.</p> <p>Results</p> <p>Odds Ratio (OR) for developing AD was significantly increased in carriers of the <it>APOE </it>ε4 allele compared to individuals with the <it>APOE </it>ε3/ε3 genotype. Individuals carrying <it>APOE </it>ε4/ε4 had OR of 12.9 for developing AD, while carriers of <it>APOE </it>ε2/ε4 and <it>APOE </it>ε3/ε4 had OR of 3.2 and 4.2 respectively. The effect of the <it>APOE </it>ε4 allele was weaker with increasing age. Carrying the <it>APOE </it>ε2 allele showed no significant protective effect against AD and did not influence age at onset of the disease. Onset in LOAD patients was significantly reduced in a dose dependent manner from 78.4 years in patients without the <it>APOE </it>ε4 allele, to 75.3 in carriers of one <it>APOE </it>ε4 allele and 72.9 in carriers of two <it>APOE </it>ε4 alleles. Age at onset in early onset AD (EOAD) was not influenced by <it>APOE </it>ε4 alleles.</p> <p>Conclusion</p> <p><it>APOE </it>ε4 is a very strong risk factor for AD in the population of central Norway, and lowers age at onset of LOAD significantly.</p

    Long-Term Gene Therapy Causes Transgene-Specific Changes in the Morphology of Regenerating Retinal Ganglion Cells

    Get PDF
    Recombinant adeno-associated viral (rAAV) vectors can be used to introduce neurotrophic genes into injured CNS neurons, promoting survival and axonal regeneration. Gene therapy holds much promise for the treatment of neurotrauma and neurodegenerative diseases; however, neurotrophic factors are known to alter dendritic architecture, and thus we set out to determine whether such transgenes also change the morphology of transduced neurons. We compared changes in dendritic morphology of regenerating adult rat retinal ganglion cells (RGCs) after long-term transduction with rAAV2 encoding: (i) green fluorescent protein (GFP), or (ii) bi-cistronic vectors encoding GFP and ciliary neurotrophic factor (CNTF), brain-derived neurotrophic factor (BDNF) or growth-associated protein-43 (GAP43). To enhance regeneration, rats received an autologous peripheral nerve graft onto the cut optic nerve of each rAAV2 injected eye. After 5–8 months, RGCs with regenerated axons were retrogradely labeled with fluorogold (FG). Live retinal wholemounts were prepared and GFP positive (transduced) or GFP negative (non-transduced) RGCs injected iontophoretically with 2% lucifer yellow. Dendritic morphology was analyzed using Neurolucida software. Significant changes in dendritic architecture were found, in both transduced and non-transduced populations. Multivariate analysis revealed that transgenic BDNF increased dendritic field area whereas GAP43 increased dendritic complexity. CNTF decreased complexity but only in a subset of RGCs. Sholl analysis showed changes in dendritic branching in rAAV2-BDNF-GFP and rAAV2-CNTF-GFP groups and the proportion of FG positive RGCs with aberrant morphology tripled in these groups compared to controls. RGCs in all transgene groups displayed abnormal stratification. Thus in addition to promoting cell survival and axonal regeneration, vector-mediated expression of neurotrophic factors has measurable, gene-specific effects on the morphology of injured adult neurons. Such changes will likely alter the functional properties of neurons and may need to be considered when designing vector-based protocols for the treatment of neurotrauma and neurodegeneration

    Alzheimer’s disease: diagnostics, prognostics and the road to prevention

    Get PDF
    Alzheimer’s disease (AD) presents one of the leading healthcare challenges of the 21st century, with a projected worldwide prevalence of >107 million cases by 2025. While biomarkers have been identified, which may correlate with disease progression or subtype for the purpose of disease monitoring or differential diagnosis, a biomarker for reliable prediction of late onset disease risk has not been available until now. This deficiency in reliable predictive biomarkers, coupled with the devastating nature of the disease, places AD at a high priority for focus by predictive, preventive and personalized medicine. Recent data, discovered using phylogenetic analysis, suggest that a variable length poly-T sequence polymorphism in the TOMM40 gene, adjacent to the APOE gene, is predictive of risk of AD age-of-onset when coupled with a subject’s current age. This finding offers hope for reliable assignment of disease risk within a 5-7 year window, and is expected to guide enrichment of clinical trials in order to speed development of preventative medicines

    Protein Homeostasis, Aging and Alzheimer’s Disease

    Full text link

    Atherosclerosis and Alzheimer - diseases with a common cause? Inflammation, oxysterols, vasculature

    Full text link

    Optical Pulsations of HZ Herculis

    No full text

    Colours and Redshifts of Quasars

    No full text

    I Zw 1727 + 50: a New Lacertid?

    No full text
    corecore