2,915 research outputs found

    Stormflow hydrochemistry in a river draining an abandoned metal mine: the Afon Twymyn, central Wales

    Get PDF
    Contaminated drainage from metal mines is a serious water-quality problem facing nations that exploit metal mineral resources. Measurements of river hydrochemistry during baseflow are common at mine sites, whilst detailed hydrochemical information regarding stormflow is limited and often confined to a single event. This study investigates the seasonal evolution of stormflow hydrochemistry at an abandoned metal mine in central Wales, UK, and the possible sources and mechanisms of metal release. Significant flushing of metals was observed during stormflow events, resulting in concentrations that severely exceeded water-quality guidelines. The relationship between metal concentrations and river discharge suggests dissolution of efflorescent metal sulphates on the surface of the mine spoil as the principal source of the contamination. High fluxes of Pb during stormflows are linked to extended periods of dry weather prior to storm events that produced water table drawdown and encouraged oxidation of Pb sulphide in the mine spoil. However, some Pb flushing also occurred following wet antecedent conditions. It is suggested that Fe oxide reduction in mine spoil and translatory flows involving metal-rich pore waters results in flushing during wetter periods. Detailed measurements of stormflow hydrochemistry at mine sites are essential for accurate forecasting of long-term trends in metals flux to understand metal sources and mechanisms of release, to assess potential risks to water quality and instream ecology, and to gauge the potential effectiveness of remediation. In order to protect riverine and riparian ecosystems, it is suggested that routine monitoring of stormflows becomes part of catchment management in mining-impacted regions

    Short-term fluctuations in heavy metal concentrations during flood events through abandoned metal mines, with implications for aquatic ecology and mine water treatment

    Get PDF
    The variability in heavy metal concentrations and physico-chemical parameters during rain-fed river floods that pass through abandoned metal mines is poorly understood due to the difficulties of sampling these events. Such information is essential for the characterisation of contaminant dynamics and for investigations of contaminant/ecosystem relations and the effectiveness of remediation. This study investigates the role of flood flows in contaminant mobilisation and temporary increases in toxicity at an abandoned metal mine in central Wales, UK. Flood events substantially increase the potential toxicity of river water. The principal contaminants are dissolved Pb, mobilized by increased acidity resulting from the dissolution and flushing of efflourescent salts accumulated on the surface of mine spoil. The implications of flood runoff and contaminant mobilisation for aquatic ecology and mine water treatment are discussed

    Computation with Polynomial Equations and Inequalities arising in Combinatorial Optimization

    Full text link
    The purpose of this note is to survey a methodology to solve systems of polynomial equations and inequalities. The techniques we discuss use the algebra of multivariate polynomials with coefficients over a field to create large-scale linear algebra or semidefinite programming relaxations of many kinds of feasibility or optimization questions. We are particularly interested in problems arising in combinatorial optimization.Comment: 28 pages, survey pape

    Improvement Happens: Doctors Talk About the Medical Home

    Full text link

    A Randomized Trial of Intravenous Iron Supplementation and Exercise on Exercise Capacity in Iron-Deficient Nonanemic Patients With CKD

    Get PDF
    Introduction: Patients with chronic kidney disease (CKD) are often iron deficient, even when not anemic. This trial evaluated whether iron supplementation enhances exercise capacity of nonanemic patients with CKD who have iron-deficiency. Methods: Prospective, multicenter double-blind randomized controlled trial of nondialysis patients with CKD and iron-deficiency but without anemia (Hemoglobin [Hb] >110 g/l). Patients were assigned 1:1 to intravenous (IV) iron therapy, or placebo. An 8-week exercise program commenced at week 4. The primary outcome was the mean between-group difference in 6-minute walk test (6MWT) at 4 weeks. Secondary outcomes included 6MWT at 12 weeks, transferrin saturation (TSAT), serum ferritin (SF), Hb, renal function, muscle strength, functional capacity, quality of life, and adverse events at baseline, 4 weeks, and at 12 weeks. Mean between-group differences were analyzed using analysis of covariance models. Results: Among 75 randomized patients, mean (SD) age for iron therapy (n = 37) versus placebo (n = 38) was 54 (16) versus 61 (12) years; estimated glomerular filtration rate (eGFR) (34 [12] vs. 35 [11] ml/min per 1.73 m2], TSAT (23 [12] vs. 21 [6])%; SF (57 [64] vs. 62 [33]) ÎŒg/l; Hb (122.4 [9.2] vs. 127 [13.2] g/l); 6MWT (384 [95] vs. 469 [142] meters) at baseline, respectively. No significant mean between-group difference was observed in 6MWT distance at 4 weeks. There were significant increases in SF and TSAT at 4 and 12 weeks (P < 0.02), and Hb at 12 weeks (P = 0.009). There were no between-group differences in other secondary outcomes and no adverse events attributable to iron therapy. Conclusion: This trial did not demonstrate beneficial effects of IV iron therapy on exercise capacity at 4 weeks. A larger study is needed to confirm if IV iron is beneficial in nondialysis patients with CKD who are iron-deficient

    The impact of inter‐flood duration on non‐cohesive sediment bed stability

    Get PDF
    © 2019 John Wiley & Sons, Ltd. Limited field and flume data suggests that both uniform and graded beds appear to progressively stabilize when subjected to inter-flood flows as characterized by the absence of active bedload transport. Previous work has shown that the degree of bed stabilization scales with duration of inter-flood flow, however, the sensitivity of this response to bed surface grain size distribution has not been explored. This article presents the first detailed comparison of the dependence of graded bed stability on inter-flood flow duration. Sixty discrete experiments, including repetitions, were undertaken using three grain size distributions of identical D50 (4.8 mm); near-uniform (σg = 1.13), unimodal (σg = 1.63) and bimodal (σg = 2.08). Each bed was conditioned for between 0 (benchmark) and 960 minutes by an antecedent shear stress below the entrainment threshold of the bed (τ*c50). The degree of bed stabilization was determined by measuring changes to critical entrainment thresholds and bedload flux characteristics. Results show that (i) increasing inter-flood duration from 0 to 960 minutes increases the average threshold shear stress of the D50 by up to 18%; (ii) bedload transport rates were reduced by up to 90% as inter-flood duration increased from 0 to 960 minutes; (iii) the rate of response to changes in inter-flood duration in both critical shear stress and bedload transport rate is non-linear and is inversely proportional to antecedent duration; (iv) there is a grade dependent response to changes in critical shear stress where the magnitude of response in uniform beds is up to twice that of the graded beds; and (v) there is a grade dependent response to changes in bedload transport rate where the bimodal bed is most responsive in terms of the magnitude of change. These advances underpin the development of more accurate predictions of both entrainment thresholds and bedload flux timing and magnitude, as well as having implications for the management of environmental flow design. © 2019 John Wiley & Sons, Ltd. © 2019 John Wiley & Sons, Ltd

    Stellar winds from Massive Stars

    Get PDF
    We review the various techniques through which wind properties of massive stars - O stars, AB supergiants, Luminous Blue Variables (LBVs), Wolf-Rayet (WR) stars and cool supergiants - are derived. The wind momentum-luminosity relation (e.g. Kudritzki et al. 1999) provides a method of predicting mass-loss rates of O stars and blue supergiants which is superior to previous parameterizations. Assuming the theoretical sqrt(Z) metallicity dependence, Magellanic Cloud O star mass-loss rates are typically matched to within a factor of two for various calibrations. Stellar winds from LBVs are typically denser and slower than equivalent B supergiants, with exceptional mass-loss rates during giant eruptions Mdot=10^-3 .. 10^-1 Mo/yr (Drissen et al. 2001). Recent mass-loss rates for Galactic WR stars indicate a downward revision of 2-4 relative to previous calibrations due to clumping (e.g. Schmutz 1997), although evidence for a metallicity dependence remains inconclusive (Crowther 2000). Mass-loss properties of luminous (> 10^5 Lo) yellow and red supergiants from alternative techniques remain highly contradictory. Recent Galactic and LMC results for RSG reveal a large scatter such that typical mass-loss rates lie in the range 10^-6 .. 10^-4 Mo/yr, with a few cases exhibiting 10^-3 Mo/yr.Comment: 16 pages, 2 figures, Review paper to appear in Proc `The influence of binaries on stellar population studies', Brussels, Aug 2000 (D. Vanbeveren ed.), Kluwe

    Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa

    Get PDF
    Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface
    • 

    corecore