135 research outputs found

    Is there evidence for accelerated polyethylene wear in uncemented compared to cemented acetabular components? A systematic review of the literature

    Get PDF
    Joint arthroplasty registries show an increased rate of aseptic loosening in uncemented acetabular components as compared to cemented acetabular components. Since loosening is associated with particulate wear debris, we postulated that uncemented acetabular components demonstrate a higher polyethylene wear rate than cemented acetabular components in total hip arthroplasty. We performed a systematic review of the peer-reviewed literature, comparing the wear rate in uncemented and cemented acetabular components in total hip arthroplasty. Studies were identified using MEDLINE (PubMed), EMBASE and the Cochrane Central Register of Controlled Trials. Study quality was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. The search resulted in 425 papers. After excluding duplicates and selection based on title and abstracts, nine studies were found eligible for further analysis: two randomised controlled trials, and seven observational studies. One randomised controlled trial found a higher polyethylene wear rate in uncemented acetabular components, while the other found no differences. Three out of seven observational studies showed a higher polyethylene wear in uncemented acetabular component fixation; the other four studies did not show any differences in wear rates. The available evidence suggests that a higher annual wear rate may be encountered in uncemented acetabular components as compared to cemented components

    Widespread sex differences in gene expression and splicing in the adult human brain

    Get PDF
    There is strong evidence to show that men and women differ in terms of neurodevelopment, neurochemistry and susceptibility to neurodegenerative and neuropsychiatric disease. The molecular basis of these differences remains unclear. Progress in this field has been hampered by the lack of genome-wide information on sex differences in gene expression and in particular splicing in the human brain. Here we address this issue by using post-mortem adult human brain and spinal cord samples originating from 137 neuropathologically confirmed control individuals to study whole-genome gene expression and splicing in 12 CNS regions. We show that sex differences in gene expression and splicing are widespread in adult human brain, being detectable in all major brain regions and involving 2.5% of all expressed genes. We give examples of genes where sex-biased expression is both disease-relevant and likely to have functional consequences, and provide evidence suggesting that sex biases in expression may reflect sex-biased gene regulatory structures

    Correlation of adrenomedullin gene expression in peripheral blood leukocytes with severity of ischemic stroke

    Get PDF
    Human adrenomedullin (ADM), a 52-amino acid peptide, belongs to the calcitonin/calcitonin gene-related peptide (CGRP)/amylin peptide family. ADM acts as a multifunctional regulatory peptide and is upregulated in response to hypoxia. Previous microarray studies have found increased ADM gene (ADM) expression in peripheral blood cells of patients with stroke, however, it is unknown if an increased ADM level is correlated with severity of human ischemic stroke. This study investigated ADM expression in peripheral blood leukocytes (PBL) of healthy controls and subjects at day 1, week 1 and week 3 postacute ischemic stroke using rtPCR methodology. We found that ADM expression was significantly upregulated on the first day of stroke compared to the healthy subjects and the disease controls; the levels remained elevated for up to week 3. Further, ADM expression at day 1 was correlated with stroke severity measured by the National Institute of Healthy Stroke Scale (NIHSS), the modified Barthel Index (mBI) and the modified Rankin Scale (mRS). This could indicate that ADM expression level is related to the severity of tissue damage. We suggest that increased ADM expression in PBL after acute ischemic stroke is most likely to indicate that these cells have been subjected to hypoxia and that the magnitude of expression is likely to be related to the volume of hypoxic tissue. Hypoxia can affect lymphocytes function and could affect the immune response to stroke. The correlation of ADM expression level with the measures of stroke severity implicates ADM - a potential blood bio-marker in studies of ischemic stroke

    Functional characterisation of the amyotrophic lateral sclerosis risk locus GPX3/TNIP1

    Get PDF
    Background: Amyotrophic lateral sclerosis (ALS) is a complex, late-onset, neurodegenerative disease with a genetic contribution to disease liability. Genome-wide association studies (GWAS) have identified ten risk loci to date, including the TNIP1/GPX3 locus on chromosome five. Given association analysis data alone cannot determine the most plausible risk gene for this locus, we undertook a comprehensive suite of in silico, in vivo and in vitro studies to address this. // Methods: The Functional Mapping and Annotation (FUMA) pipeline and five tools (conditional and joint analysis (GCTA-COJO), Stratified Linkage Disequilibrium Score Regression (S-LDSC), Polygenic Priority Scoring (PoPS), Summary-based Mendelian Randomisation (SMR-HEIDI) and transcriptome-wide association study (TWAS) analyses) were used to perform bioinformatic integration of GWAS data (Ncases = 20,806, Ncontrols = 59,804) with ‘omics reference datasets including the blood (eQTLgen consortium N = 31,684) and brain (N = 2581). This was followed up by specific expression studies in ALS case-control cohorts (microarray Ntotal = 942, protein Ntotal = 300) and gene knockdown (KD) studies of human neuronal iPSC cells and zebrafish-morpholinos (MO). // Results: SMR analyses implicated both TNIP1 and GPX3 (p < 1.15 × 10−6), but there was no simple SNP/expression relationship. Integrating multiple datasets using PoPS supported GPX3 but not TNIP1. In vivo expression analyses from blood in ALS cases identified that lower GPX3 expression correlated with a more progressed disease (ALS functional rating score, p = 5.5 × 10−3, adjusted R2 = 0.042, Beffect = 27.4 ± 13.3 ng/ml/ALSFRS unit) with microarray and protein data suggesting lower expression with risk allele (recessive model p = 0.06, p = 0.02 respectively). Validation in vivo indicated gpx3 KD caused significant motor deficits in zebrafish-MO (mean difference vs. control ± 95% CI, vs. control, swim distance = 112 ± 28 mm, time = 1.29 ± 0.59 s, speed = 32.0 ± 2.53 mm/s, respectively, p for all < 0.0001), which were rescued with gpx3 expression, with no phenotype identified with tnip1 KD or gpx3 overexpression. // Conclusions: These results support GPX3 as a lead ALS risk gene in this locus, with more data needed to confirm/reject a role for TNIP1. This has implications for understanding disease mechanisms (GPX3 acts in the same pathway as SOD1, a well-established ALS-associated gene) and identifying new therapeutic approaches. Few previous examples of in-depth investigations of risk loci in ALS exist and a similar approach could be applied to investigate future expected GWAS findings

    Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics

    Get PDF
    We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10−9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients’ fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: −2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: −1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients

    A “Crossomics” Study Analysing Variability of Different Components in Peripheral Blood of Healthy Caucasoid Individuals

    Get PDF
    Background: Different immunotherapy approaches for the treatment of cancer and autoimmune diseases are being developed and tested in clinical studies worldwide. Their resulting complex experimental data should be properly evaluated, therefore reliable normal healthy control baseline values are indispensable. Methodology/Principal Findings: To assess intra- and inter-individual variability of various biomarkers, peripheral blood of 16 age and gender equilibrated healthy volunteers was sampled on 3 different days within a period of one month. Complex "crossomics'' analyses of plasma metabolite profiles, antibody concentrations and lymphocyte subset counts as well as whole genome expression profiling in CD4(+)T and NK cells were performed. Some of the observed age, gender and BMI dependences are in agreement with the existing knowledge, like negative correlation between sex hormone levels and age or BMI related increase in lipids and soluble sugars. Thus we can assume that the distribution of all 39.743 analysed markers is well representing the normal Caucasoid population. All lymphocyte subsets, 20% of metabolites and less than 10% of genes, were identified as highly variable in our dataset. Conclusions/Significance: Our study shows that the intra- individual variability was at least two-fold lower compared to the inter-individual one at all investigated levels, showing the importance of personalised medicine approach from yet another perspective

    Relapse patterns in NMOSD: evidence for earlier occurrence of optic neuritis and possible seasonal variation

    Get PDF
    Neuromyelitis optica spectrum disorders (NMOSD) and multiple sclerosis (MS) show overlap in their clinical features. We performed an analysis of relapses with the aim of determining differences between the two conditions. Cases of NMOSD and age- and sex-matched MS controls were collected from across Australia and New Zealand. Demographic and clinical information, including relapse histories, were recorded using a standard questionnaire. There were 75 cases of NMOSD and 101 MS controls. There were 328 relapses in the NMOSD cases and 375 in MS controls. Spinal cord and optic neuritis attacks were the most common relapses in both NMOSD and MS. Optic neuritis (p P = 0.002) were more common in NMOSD and other brainstem attacks were more common in MS (p P = 0.065). Optic neuritis and transverse myelitis are the most common types of relapse in NMOSD and MS. Optic neuritis tends to occur more frequently in NMOSD prior to the age of 30, with transverse myelitis being more common thereafter. Relapses in NMOSD were more severe. A seasonal bias for relapses in spring-summer may exist in NMOSD

    Autoimmune Neuromuscular Disorders in Childhood

    Get PDF
    Autoimmune neuromuscular disorders in childhood include Guillain-Barré syndrome and its variants, chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), juvenile myasthenia gravis (JMG), and juvenile dermatomyositis (JDM), along with other disorders rarely seen in childhood. In general, these diseases have not been studied as extensively as they have been in adults. Thus, treatment protocols for these diseases in pediatrics are often based on adult practice, but despite the similarities in disease processes, the most widely used treatments have different effects in children. For example, some of the side effects of chronic steroid use, including linear growth deceleration, bone demineralization, and chronic weight issues, are more consequential in children than in adults. Although steroids remain a cornerstone of therapy in JDM and are useful in many cases of CIDP and JMG, other immunomodulatory therapies with similar efficacy may be used more frequently in some children to avoid these long-term sequelae. Steroids are less expensive than most other therapies, but chronic steroid therapy in childhood may lead to significant and costly medical complications. Another example is plasma exchange. This treatment modality presents challenges in pediatrics, as younger children require central venous access for this therapy. However, in older children and adolescents, plasma exchange is often feasible via peripheral venous access, making this treatment more accessible than might be expected in this age group. Intravenous immunoglobulin also is beneficial in several of these disorders, but its high cost may present barriers to its use in the future. Newer steroid-sparing immunomodulatory agents, such as azathioprine, tacrolimus, mycophenolate mofetil, and rituximab, have not been studied extensively in children. They show promising results from case reports and retrospective cohort studies, but there is a need for comparative studies looking at their relative efficacy, tolerability, and long-term adverse effects (including secondary malignancy) in children
    corecore