620 research outputs found

    Unrestricted utilization of sirolimus-eluting stents in the "real world"

    Get PDF

    Unrestricted utilization of sirolimus-eluting stents in the "real world"

    Get PDF

    Three-dimensional reconstruction of coronary arteries and plaque morphology using CT angiography - comparison and registration with IVUS

    Get PDF
    BACKGROUND: The aim of this study is to present a new methodology for three-dimensional (3D) reconstruction of coronary arteries and plaque morphology using Computed Tomography Angiography (CTA). METHODS: The methodology is summarized in six stages: 1) pre-processing of the initial raw images, 2) rough estimation of the lumen and outer vessel wall borders and approximation of the vessel’s centerline, 3) manual adaptation of plaque parameters, 4) accurate extraction of the luminal centerline, 5) detection of the lumen - outer vessel wall borders and calcium plaque region, and 6) finally 3D surface construction. RESULTS: The methodology was compared to the estimations of a recently presented Intravascular Ultrasound (IVUS) plaque characterization method. The correlation coefficients for calcium volume, surface area, length and angle vessel were 0.79, 0.86, 0.95 and 0.88, respectively. Additionally, when comparing the inner and outer vessel wall volumes of the reconstructed arteries produced by IVUS and CTA the observed correlation was 0.87 and 0.83, respectively. CONCLUSIONS: The results indicated that the proposed methodology is fast and accurate and thus it is likely in the future to have applications in research and clinical arena

    A novel retrospective gating method for intracoronary ultrasound images based on image properties

    Full text link
    Intracoronary ultrasound (ICUS) provides high-resolution tomographic images of selected segments of coronary arteries. Series of cross-sectional images are acquired with motorized pullback imaging catheters and used for quantitative analysis in intracoronary ultrasound studies (ICUS). Due to catheter displacement in the vascular lumen during the cardiac cycle the images that are typically acquired at 0.5 mm/s are anatomically shuffled. This results in a saw-tooth shaped appearance of the coronary segment in longitudinal reconstructed views (L-views) used frequently in quantitative coronary ultrasound (QCU) software. This paper describes a novel image-based gating method called “Intelligate”, which overcomes this problem by automatic retrospective selection of end-diastolic frames from pre-recorded ICUS studies. Our evaluation shows that there are no quantitative differences between analysis results of hardware ECG-gated and intelligated ICUS studies. 1

    Numerical modeling of the tension stiffening in reinforced concrete members via discontinuum models

    Get PDF
    [prova tipogrĂĄfica]This study presents a numerical investigation on the fracture mechanism of tension stiffening phenomenon in reinforced concrete members. A novel approach using the discrete element method (DEM) is proposed, where three-dimensional randomly generated distinct polyhedral blocks are used, representing concrete and one-dimensional truss elements are utilized, representing steel reinforcements. Thus, an explicit representation of reinforced concrete members is achieved, and the mechanical behavior of the system is solved by integrating the equations of motion for each block using the central difference algorithm. The inter-block interactions are taken into consideration at each contact point with springs and cohesive frictional elements. Once the applied modeling strategy is validated, based on previously published experimental findings, a sensitivity analysis is performed for bond stiffness, cohesion strength, and the number of truss elements. Hence, valuable inferences are made regarding discontinuum analysis of reinforced concrete members, including concrete-steel interaction and their macro behavior. The results demonstrate that the proposed phenomenological modeling strategy successfully captures the concrete-steel interaction and provides an accurate estimation of the macro behavior

    To what extent are land resource managers preparing for high-end climate change in Scotland?

    Get PDF
    We explore the individual and institutional conditions and the climate information used to underpin decision-making for adaptation to high-end climate change (HECC) scenarios in a land resource management context. HECC refers to extreme projections with global annual temperature increases of over 4 °C. We analyse whether HECC scenarios are used in the adaptation decision-making of stakeholders who will tackle the potential problem. We also explore whether the adaptation actions being considered are pertinent only to future climate change or whether other drivers and information types are used in decision-making (including non-climate drivers). We also address the role of knowledge uncertainty in adaptation decision-making. Decision-makers perceive HECC as having a low probability of occurrence and so they do not directly account for HECC within existing actions to address climate change. Such actions focus on incremental rather than transformative solutions in which non-climate drivers are at least as important, and in many cases more important, than climate change alone. This reflects the need to accommodate multiple concerns and low risk options (i.e. incremental change). Uncertainty in climate change information is not a significant barrier to decision-making and stakeholders indicated little need for more climate information in support of adaptation decision-making. There is, however, an identified need for more information about the implications of particular sectoral and cross-sectoral impacts under HECC scenarios. The outcomes of this study provide evidence to assist in contextualising climate change information by creating usable, cross-sectoral, decision-centred information

    A Herbivorous Mite Down-Regulates Plant Defence and Produces Web to Exclude Competitors

    Get PDF
    Herbivores may interact with each other through resource competition, but also through their impact on plant defence. We recently found that the spider mite Tetranychus evansi down-regulates plant defences in tomato plants, resulting in higher rates of oviposition and population growth on previously attacked than on unattacked leaves. The danger of such down-regulation is that attacked plants could become a more profitable resource for heterospecific competitors, such as the two-spotted spider mite Tetranychus urticae. Indeed, T. urticae had an almost 2-fold higher rate of oviposition on leaf discs on which T. evansi had fed previously. In contrast, induction of direct plant defences by T. urticae resulted in decreased oviposition by T. evansi. Hence, both herbivores affect each other through induced plant responses. However, when populations of T. evansi and T. urticae competed on the same plants, populations of the latter invariably went extinct, whereas T. evansi was not significantly affected by the presence of its competitor. This suggests that T. evansi can somehow prevent its competitor from benefiting from the down-regulated plant defence, perhaps by covering it with a profuse web. Indeed, we found that T. urticae had difficulties reaching the leaf surface to feed when the leaf was covered with web produced by T. evansi. Furthermore, T. evansi produced more web when exposed to damage or other cues associated with T. urticae. We suggest that the silken web produced by T. evansi serves to prevent competitors from profiting from down-regulated plant defences
    • …
    corecore