85 research outputs found

    Classification of patients with knee osteoarthritis in clinical phenotypes: data from the osteoarthritis initiative

    Get PDF
    <div><p>Objectives</p><p>The existence of phenotypes has been hypothesized to explain the large heterogeneity characterizing the knee osteoarthritis. In a previous systematic review of the literature, six main phenotypes were identified: Minimal Joint Disease (MJD), Malaligned Biomechanical (MB), Chronic Pain (CP), Inflammatory (I), Metabolic Syndrome (MS) and Bone and Cartilage Metabolism (BCM). The purpose of this study was to classify a sample of individuals with knee osteoarthritis (KOA) into pre-defined groups characterized by specific variables that can be linked to different disease mechanisms, and compare these phenotypes for demographic and health outcomes.</p><p>Methods</p><p>599 patients were selected from the OAI database FNIH at 24 months’ time to conduct the study. For each phenotype, cut offs of key variables were identified matching the results from previous studies in the field and the data available for the sample. The selection process consisted of 3 steps. At the end of each step, the subjects classified were excluded from the further classification stages. Patients meeting the criteria for more than one phenotype were classified separately into a ‘complex KOA’ group.</p><p>Results</p><p>Phenotype allocation (including complex KOA) was successful for 84% of cases with an overlap of 20%. Disease duration was shorter in the MJD while the CP phenotype included a larger number of Women (81%). A significant effect of phenotypes on WOMAC pain (F = 16.736 p <0.001) and WOMAC physical function (F = 14.676, p < 0.001) was identified after controlling for disease duration.</p><p>Conclusion</p><p>This study signifies the feasibility of a classification of KOA subjects in distinct phenotypes based on subgroup-specific characteristics.</p></div

    Independent prognostic value of angiogenesis and the level of plasminogen activator inhibitor type 1 in breast cancer patients

    Get PDF
    Tumour angiogenesis and the levels of plasminogen activator inhibitor type I (PAI-I) are both informative prognostic markers in breast cancer. In cell cultures and in animal model systems, PAI-I has a proangiogenic effect. To evaluate the interrelationship of angiogenesis and the PAI-I level in breast cancer, we have evaluated the prognostic value of those factors in a total of 228 patients with primary, unilateral, invasive breast cancer, evaluated at a median follow-up time of 12 years. Microvessels were immunohistochemically stained by antibodies against CD34 and quantitated by the Chalkley counting technique. The levels of PAI-I and its target proteinase uPA in tumour extracts were analysed by ELISA. The Chalkley count was not correlated with the levels of uPA or PAI-I. High values of uPA, PAI-I, and Chalkley count were all significantly correlated with a shorter recurrence-free survival and overall survival. In the multivariate analysis, the uPA level did not show independent prognostic impact for any of the analysed end points. In contrast, the risk of recurrence was independently and significantly predicted by both the PAI-I level and the Chalkley count, with a hazard ratio (95% CI) of 1.6 (1.01-2.69) and 1.4 (1.02-1.81), respectively. For overall survival, the Chalkley count, but not PAI-I, was of significant independent prognostic value. The risk of death was 1.7 (1,30-2.15) for Chalkley counts in the upper tertile compared to the lower one. We conclude that the PAI-I level and the Chalkley count are independent prognostic markers for recurrence-free survival in patients with primary breast cancer, suggesting that the prognostic impact of PAI-I is not only based on its involvement in angiogenesis. (C) 2003 Cancer Research UK

    Proprioception deficiency in articular cartilage lesions of the knee

    Get PDF
    Purpose: The purpose of this study is to investigate the proprioceptive function of patients with isolated articular cartilage lesions of the knee as compared to normal controls. Methods: The Cartilage group consisted of eight subjects with radiologically and arthroscopically confirmed, isolated, unilateral, articular cartilage lesions of the knee (Outerbridge grade III or IV). They were compared to 50 normal controls. Knee proprioception was assessed by dynamic postural stabilometry using the Biodex Balance SD System. Patient-reported outcome measures (PROMs) were used to evaluate all subjects. Results: Proprioception of the injured knee of the Cartilage group was significantly poorer compared to that of the control group (p < 0.001). A significant proprioceptive deficit also was observed when the uninjured knees of the Cartilage group were compared to those in the Control group (p = 0.003). There was no significant proprioceptive difference between the injured and the contra-lateral uninjured knee of the Cartilage group (p = 0.116). A significant correlation was found between the proprioception measurements of the injured and uninjured knee of the Cartilage group (r = 0.76, p = 0.030). A significant difference was observed in all PROMs (p < 0.001) between the Cartilage and Control groups. Conclusions: Patients with isolated articular cartilage lesions of the knee had a significant proprioceptive deficit as compared to normal controls. The deficiency was profound and even affected the proprioceptive function of the contra-lateral uninjured knee. This study has shown that articular cartilage lesions have a major influence on knee proprioception. However, it remains uncertain as to whether a proprioceptive deficit leads to osteoarthritis or is a consequence of it

    Cognition, behaviour and academic skills after cognitive rehabilitation in Ugandan children surviving severe malaria: a randomised trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Infection with severe malaria in African children is associated with not only a high mortality but also a high risk of cognitive deficits. There is evidence that interventions done a few years after the illness are effective but nothing is known about those done immediately after the illness. We designed a study in which children who had suffered from severe malaria three months earlier were enrolled into a cognitive intervention program and assessed for the immediate benefit in cognitive, academic and behavioral outcomes.</p> <p>Methods</p> <p>This parallel group randomised study was carried out in Kampala City, Uganda between February 2008 and October 2010. Sixty-one Ugandan children aged 5 to 12 years with severe malaria were assessed for cognition (using the Kaufman Assessment Battery for Children, second edition and the Test of Variables of Attention), academic skills (Wide Range Achievement Test, third edition) and psychopathologic behaviour (Child Behaviour Checklist) three months after an episode of severe malaria. Twenty-eight were randomised to sixteen sessions of computerised cognitive rehabilitation training lasting eight weeks and 33 to a non-treatment group. Post-intervention assessments were done a month after conclusion of the intervention. Analysis of covariance was used to detect any differences between the two groups after post-intervention assessment, adjusting for age, sex, weight for age z score, quality of the home environment, time between admission and post-intervention testing and pre-intervention score. The primary outcome was improvement in attention scores for the intervention group. This trial is registered with Current Controlled Trials, number ISRCTN53183087.</p> <p>Results</p> <p>Significant intervention effects were observed in the intervention group for learning mean score (SE), [93.89 (4.00) vs 106.38 (4.32), <it>P </it>= 0.04] but for working memory the intervention group performed poorly [27.42 (0.66) vs 25.34 (0.73), <it>P </it>= 0.04]. No effect was observed in the other cognitive outcomes or in any of the academic or behavioural measures.</p> <p>Conclusions</p> <p>In this pilot study, our computerised cognitive training program three months after severe malaria had an immediate effect on cognitive outcomes but did not affect academic skills or behaviour. Larger trials with follow-up after a few years are needed to investigate whether the observed benefits are sustained.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN53183087">ISRCTN53183087</a></p

    Facilitation or Competition? Tree Effects on Grass Biomass across a Precipitation Gradient

    Get PDF
    Savanna ecosystems are dominated by two distinct plant life forms, grasses and trees, but the interactions between them are poorly understood. Here, we quantified the effects of isolated savanna trees on grass biomass as a function of distance from the base of the tree and tree height, across a precipitation gradient in the Kruger National Park, South Africa. Our results suggest that mean annual precipitation (MAP) mediates the nature of tree-grass interactions in these ecosystems, with the impact of trees on grass biomass shifting qualitatively between 550 and 737 mm MAP. Tree effects on grass biomass were facilitative in drier sites (MAP≤550 mm), with higher grass biomass observed beneath tree canopies than outside. In contrast, at the wettest site (MAP = 737 mm), grass biomass did not differ significantly beneath and outside tree canopies. Within this overall precipitation-driven pattern, tree height had positive effect on sub-canopy grass biomass at some sites, but these effects were weak and not consistent across the rainfall gradient. For a more synthetic understanding of tree-grass interactions in savannas, future studies should focus on isolating the different mechanisms by which trees influence grass biomass, both positively and negatively, and elucidate how their relative strengths change over broad environmental gradients. © 2013 Moustakas et al

    A review of bronchiolitis obliterans syndrome and therapeutic strategies

    Get PDF
    Lung transplantation is an important treatment option for patients with advanced lung disease. Survival rates for lung transplant recipients have improved; however, the major obstacle limiting better survival is bronchiolitis obliterans syndrome (BOS). In the last decade, survival after lung retransplantation has improved for transplant recipients with BOS. This manuscript reviews BOS along with the current therapeutic strategies, including recent outcomes for lung retransplantation

    The role of CSF1R-dependent macrophages in control of the intestinal stem cell niche

    Get PDF
    Colony-stimulating factor 1 (CSF1) controls the growth and differentiation of macrophages.CSF1R signaling has been implicated in the maintenance of the intestinal stem cell niche and differentiation of Paneth cells, but evidence of expression of CSF1R within the crypt is equivocal. Here we show that CSF1R-dependent macrophages influence intestinal epithelial differentiation and homeostasis. In the intestinal lamina propria CSF1R mRNA expression is restricted to macrophages which are intimately associated with the crypt epithelium, and is undetectable in Paneth cells. Macrophage ablation following CSF1R blockade affects Paneth cell differentiation and leads to a reduction of Lgr5 intestinal stem cells. The disturbances to the crypt caused by macrophage depletion adversely affect the subsequent differentiation of intestinal epithelial cell lineages. Goblet cell density is enhanced, whereas the development of M cells in Peyer's patches is impeded. We suggest that modification of the phenotype or abundance of macrophages in the gut wall alters the development of the intestinal epithelium and the ability to sample gut antigens

    Genome-Scale Modeling of Light-Driven Reductant Partitioning and Carbon Fluxes in Diazotrophic Unicellular Cyanobacterium Cyanothece sp. ATCC 51142

    Get PDF
    Genome-scale metabolic models have proven useful for answering fundamental questions about metabolic capabilities of a variety of microorganisms, as well as informing their metabolic engineering. However, only a few models are available for oxygenic photosynthetic microorganisms, particularly in cyanobacteria in which photosynthetic and respiratory electron transport chains (ETC) share components. We addressed the complexity of cyanobacterial ETC by developing a genome-scale model for the diazotrophic cyanobacterium, Cyanothece sp. ATCC 51142. The resulting metabolic reconstruction, iCce806, consists of 806 genes associated with 667 metabolic reactions and includes a detailed representation of the ETC and a biomass equation based on experimental measurements. Both computational and experimental approaches were used to investigate light-driven metabolism in Cyanothece sp. ATCC 51142, with a particular focus on reductant production and partitioning within the ETC. The simulation results suggest that growth and metabolic flux distributions are substantially impacted by the relative amounts of light going into the individual photosystems. When growth is limited by the flux through photosystem I, terminal respiratory oxidases are predicted to be an important mechanism for removing excess reductant. Similarly, under photosystem II flux limitation, excess electron carriers must be removed via cyclic electron transport. Furthermore, in silico calculations were in good quantitative agreement with the measured growth rates whereas predictions of reaction usage were qualitatively consistent with protein and mRNA expression data, which we used to further improve the resolution of intracellular flux values
    corecore