161 research outputs found

    Diagnostic and Therapeutic Challenges

    Get PDF
    This case is submitted by Drs. Salvador Pastor-Idoate, Manchester Royal Eye Hospital, and Manchester Vision Regeneration (MVR) Lab at NIHR/Wellcome Trust, Manchester CRF, United Kingdom; Heinrich Heimann, Royal Liverpool and Broadgreen University Hospitals NHS Trust; Pearse A. Keane, Moorfields Eye Hospital, London, United Kingdom, and Konstantinos Balaskas; Manchester Royal Eye Hospital, Manchester, United Kingdom; commented by Dr. Brandon J. Lujan, Portland, Oregon

    Methane budget estimates in Finland from the CarbonTracker Europe-CH4 data assimilation system

    Get PDF
    This is the final version. Available from the publisher via the DOI in this record.We estimated the CH4 budget in Finland for 2004–2014 using the CTE-CH4 data assimilation system with an extended atmospheric CH4 observation network of seven sites from Finland to surrounding regions (HyytiΓ€lΓ€, KjΓΈlnes, Kumpula, Pallas, Puijo, SodankylΓ€, and UtΓΆ). The estimated average annual total emission for Finland is 0.6 Β± 0.5 Tg CH4 yrβˆ’1. Sensitivity experiments show that the posterior biospheric emission estimates for Finland are between 0.3 and 0.9 Tg CH4 yrβˆ’1, which lies between the LPX-Bern-DYPTOP (0.2 Tg CH4 yrβˆ’1) and LPJG-WHyMe (2.2 Tg CH4 yrβˆ’1) process-based model estimates. For anthropogenic emissions, we found that the EDGAR v4.2 FT2010 inventory (0.4 Tg CH4 yrβˆ’1) is likely to overestimate emissions in southernmost Finland, but the extent of overestimation and possible relocation of emissions are difficult to derive from the current observation network. The posterior emission estimates were especially reliant on prior information in central Finland. However, based on analysis of posterior atmospheric CH4, we found that the anthropogenic emission distribution based on a national inventory is more reliable than the one based on EDGAR v4.2 FT2010. The contribution of total emissions in Finland to global total emissions is only about 0.13%, and the derived total emissions in Finland showed no trend during 2004–2014. The model using optimized emissions was able to reproduce observed atmospheric CH4 at the sites in Finland and surrounding regions fairly well (correlation > 0.75, bias < Β± ppb), supporting adequacy of the observations to be used in atmospheric inversion studies. In addition to global budget estimates, we found that CTE-CH4 is also applicable for regional budget estimates, where small scale (1x1 in this case) optimization is possible with a dense observation network.Natural Environment Research Council (NERC)NordFrosk Nordic Centre of ExcellenceAcademy of FinlandEuropean Research Council (ERC)Swiss National Science Foundation (SNSF)Swedish Research Counci

    Increased copy number at 3p14 in breast cancer

    Get PDF
    INTRODUCTION: The present study was conducted to investigate if chromosome band 3p14 is of any pathogenic significance in the malignant process of breast cancer. Genetic studies have implicated a tumour suppressor gene on chromosome arm 3p and we have proposed LRIG1 at 3p14 as a candidate tumour suppressor. The LRIG1 gene encodes an integral membrane protein that counteracts signalling by receptor tyrosine kinases belonging to the ERBB family. LRIG1 mRNA and protein are expressed in many tissues, including breast tissue. METHODS: In the present report we analysed the LRIG1 gene by fluorescence in situ hybridisation (FISH), LRIG1 mRNA by quantitative RT-PCR, and LRIG1 protein by western blot analysis. Two tumour series were analysed; one series consisted of 19 tumour samples collected between 1987 and 1995 and the other series consisted of 9 tumour samples with corresponding non-neoplastic breast tissues collected consecutively. RESULTS: The LRIG1 gene showed increased copy number in 11 out of 28 tumours (39%) and only one tumour showed a deletion at this locus. Increased LRIG1 copy number was associated with increased levels of LRIG1 mRNA (two of three tumours) and protein (four of four tumours) in the tumours compared to matched non-neoplastic breast tissue, as assessed by RT-PCR and western blot analysis. CONCLUSION: The molecular function of LRIG1 as a negative regulator of ERBB receptors questions the biological significance of increased LRIG1 copy number in breast cancer. We propose that a common, but hitherto unrecognised, breast cancer linked gene is located within an amplicon containing the LRIG1 locus at 3p14.3

    Functional identity versus species richness: herbivory resistance in plant communities

    Get PDF
    The resistance of a plant community against herbivore attack may depend on plant species richness, with monocultures often much more severely affected than mixtures of plant species. Here, we used a plant–herbivore system to study the effects of selective herbivory on consumption resistance and recovery after herbivory in 81 experimental grassland plots. Communities were established from seed in 2002 and contained 1, 2, 4, 8, 16 or 60 plant species of 1, 2, 3 or 4 functional groups. In 2004, pairs of enclosure cages (1Β m tall, 0.5Β m diameter) were set up on all 81 plots. One randomly selected cage of each pair was stocked with 10 male and 10 female nymphs of the meadow grasshopper, Chorthippus parallelus. The grasshoppers fed for 2Β months, and the vegetation was monitored over 1Β year. Consumption resistance and recovery of vegetation were calculated as proportional changes in vegetation biomass. Overall, grasshopper herbivory averaged 6.8%. Herbivory resistance and recovery were influenced by plant functional group identity, but independent of plant species richness and number of functional groups. However, herbivory induced shifts in vegetation composition that depended on plant species richness. Grasshopper herbivory led to increases in herb cover at the expense of grasses. Herb cover increased more strongly in species-rich mixtures. We conclude that selective herbivory changes the functional composition of plant communities and that compositional changes due to selective herbivory depend on plant species richness

    Reconciling carbon-cycle concepts, terminology, and methods

    Get PDF
    Author Posting. Β© The Author(s), 2006. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Ecosystems 9 (2006): 1041-1050, doi:10.1007/s10021-005-0105-7.Recent patterns and projections of climatic change have focused increased scientific and public attention on patterns of carbon (C) cycling and its controls, particularly the factors that determine whether an ecosystem is a net source or sink of atmospheric CO2. Net ecosystem production (NEP), a central concept in C-cycling research, has been used to represent two different concepts by C-cycling scientists. We propose that NEP be restricted to just one of its two original definitionsβ€”the imbalance between gross primary production (GPP) and ecosystem respiration (ER), and that a new termβ€”net ecosystem carbon balance (NECB)β€”be applied to the net rate of C accumulation in (or loss from; negative sign) ecosystems. NECB differs from NEP when C fluxes other than C fixation and respiration occur or when inorganic C enters or leaves in dissolved form. These fluxes include leaching loss or lateral transfer of C from the ecosystem; emission of volatile organic C, methane, and carbon monoxide; and soot and CO2 from fire. C fluxes in addition to NEP are particularly important determinants of NECB over long time scales. However, even over short time scales, they are important in ecosystems such as streams, estuaries, wetlands, and cities. Recent technological advances have led to a diversity of approaches to measuring C fluxes at different temporal and spatial scales. These approaches frequently capture different components of NEP or NECB and can therefore be compared across scales only by carefully specifying the fluxes included in the measurements. By explicitly identifying the fluxes that comprise NECB and other components of the C cycle, such as net ecosystem exchange (NEE) and net biome production (NBP), we provide a less ambiguous framework for understanding and communicating recent changes in the global C cycle. Key words: Net ecosystem production, net ecosystem carbon balance, gross primary production, ecosystem respiration, autotrophic respiration, heterotrophic respiration, net ecosystem exchange, net biome production, net primary production

    Apnea of prematurity: from cause to treatment

    Get PDF
    Apnea of prematurity (AOP) is a common problem affecting premature infants, likely secondary to a β€œphysiologic” immaturity of respiratory control that may be exacerbated by neonatal disease. These include altered ventilatory responses to hypoxia, hypercapnia, and altered sleep states, while the roles of gastroesophageal reflux and anemia remain controversial. Standard clinical management of the obstructive subtype of AOP includes prone positioning and continuous positive or nasal intermittent positive pressure ventilation to prevent pharyngeal collapse and alveolar atelectasis, while methylxanthine therapy is a mainstay of treatment of central apnea by stimulating the central nervous system and respiratory muscle function. Other therapies, including kangaroo care, red blood cell transfusions, and CO2 inhalation, require further study. The physiology and pathophysiology behind AOP are discussed, including the laryngeal chemoreflex and sensitivity to inhibitory neurotransmitters, as are the mechanisms by which different therapies may work and the potential long-term neurodevelopmental consequences of AOP and its treatment
    • …
    corecore