3,710 research outputs found
Development of a laboratory-based transmission diffraction technique for in situ deformation studies of Mg alloys
A laboratory-based transmission X-ray diffraction technique was developed to measure elastic lattice strains parallel to the loading direction during in situ tensile deformation. High-quality transmission X-ray diffraction data were acquired in a time frame suitable for in situ loading experiments by application of a polycapillary X-ray optic with a conventional laboratory Cu X-ray source. Based on the measurement of two standard reference materials [lanthanum hexaboride (NIST SRM 660b) and silicon (NIST SRM 640c)], precise instrumental alignment and calibration of the transmission diffraction geometry were realized. These results were also confirmed by the equivalent data acquired using the standard Bragg-Brentano measurement geometry. An empirical Caglioti function was employed to describe the instrumental broadening, while an axis of rotation correction was used to measure and correct the specimen displacement from the centre of the goniometer axis. For precise Bragg peak position and hkil intensity information, a line profile fitting methodology was implemented, with Pawley refinement used to measure the sample reference lattice spacings (d o (hkil)). It is shown that the relatively large X-ray probe size available (7 × 714mm) provides a relatively straightforward approach for improving the grain statistics for the study of metal alloys, where grain sizes in excess of 114μm can become problematic for synchrotron-based measurements. This new laboratory-based capability was applied to study the lattice strain evolution during the elastic-plastic transition in extruded and rolled magnesium alloys. A strain resolution of 2 × 10-4 at relatively low 2θ angles (20-65° 2θ) was achieved for the in situ tensile deformation studies. In situ measurement of the elastic lattice strain accommodation with applied stress in the magnesium alloys indicated the activation of dislocation slip and twin deformation mechanisms. Furthermore, measurement of the relative change in the intensity of 0002 and 10 3 was used to quantify {10 2} 011 tensile twin onset and growth with applied load
Automating Deductive Verification for Weak-Memory Programs
Writing correct programs for weak memory models such as the C11 memory model
is challenging because of the weak consistency guarantees these models provide.
The first program logics for the verification of such programs have recently
been proposed, but their usage has been limited thus far to manual proofs.
Automating proofs in these logics via first-order solvers is non-trivial, due
to reasoning features such as higher-order assertions, modalities and rich
permission resources. In this paper, we provide the first implementation of a
weak memory program logic using existing deductive verification tools. We
tackle three recent program logics: Relaxed Separation Logic and two forms of
Fenced Separation Logic, and show how these can be encoded using the Viper
verification infrastructure. In doing so, we illustrate several novel encoding
techniques which could be employed for other logics. Our work is implemented,
and has been evaluated on examples from existing papers as well as the Facebook
open-source Folly library.Comment: Extended version of TACAS 2018 publicatio
Foot pain and foot health in an educated population of adults: results from the Glasgow Caledonian University Alumni Foot Health Survey
Abstract Background Foot pain is common amongst the general population and impacts negatively on physical function and quality of life. Associations between personal health characteristics, lifestyle/behaviour factors and foot pain have been studied; however, the role of wider determinants of health on foot pain have received relatively little attention. Objectives of this study are i) to describe foot pain and foot health characteristics in an educated population of adults; ii) to explore associations between moderate-to-severe foot pain and a variety of factors including gender, age, medical conditions/co-morbidity/multi-morbidity, key indicators of general health, foot pathologies, and social determinants of health; and iii) to evaluate associations between moderate-to-severe foot pain and foot function, foot health and health-related quality-of-life. Methods Between February and March 2018, Glasgow Caledonian University Alumni with a working email address were invited to participate in the cross-sectional electronic survey (anonymously) by email via the Glasgow Caledonian University Alumni Office. The survey was constructed using the REDCap secure web online survey application and sought information on presence/absence of moderate-to-severe foot pain, patient characteristics (age, body mass index, socioeconomic status, occupation class, comorbidities, and foot pathologies). Prevalence data were expressed as absolute frequencies and percentages. Multivariate logistic and linear regressions were undertaken to identify associations 1) between independent variables and moderate-to-severe foot pain, and 2) between moderate-to-severe foot pain and foot function, foot health and health-related quality of life. Results Of 50,228 invitations distributed, there were 7707 unique views and 593 valid completions (median age [inter-quartile range] 42 [31β52], 67.3% female) of the survey (7.7% response rate). The sample was comprised predominantly of white Scottish/British (89.4%) working age adults (95%), the majority of whom were overweight or obese (57.9%), and in either full-time or part-time employment (82.5%) as professionals (72.5%). Over two-thirds (68.5%) of the sample were classified in the highest 6 deciles (most affluent) of social deprivation. Moderate-to-severe foot pain affected 236/593 respondents (39.8%). High body mass index, presence of bunions, back pain, rheumatoid arthritis, hip pain and lower occupation class were included in the final multivariate model and all were significantly and independently associated with moderate-to-severe foot pain (pβ<β0.05), except for rheumatoid arthritis (pβ=β0.057). Moderate-to-severe foot pain was significantly and independently associated lower foot function, foot health and health-related quality of life scores following adjustment for age, gender and body mass index (pβ<β0.05). Conclusions Moderate-to-severe foot pain was highly prevalent in a university-educated population and was independently associated with female gender, high body mass index, bunions, back pain, hip pain and lower occupational class. Presence of moderate-to-severe foot pain was associated with worse scores for foot function, foot health and health-related quality-of-life. Education attainment does not appear to be protective against moderate-to-severe foot pain
Convergence and divergence in the evolution of cat skulls: temporal and spatial patterns of morphological diversity
Background: Studies of biological shape evolution are greatly enhanced when framed in a phylogenetic perspective.
Inclusion of fossils amplifies the scope of macroevolutionary research, offers a deep-time perspective on tempo and mode
of radiations, and elucidates life-trait changes. We explore the evolution of skull shape in felids (cats) through morphometric
analyses of linear variables, phylogenetic comparative methods, and a new cladistic study of saber-toothed cats.
Methodology/Principal Findings: A new phylogenetic analysis supports the monophyly of saber-toothed cats
(Machairodontinae) exclusive of Felinae and some basal felids, but does not support the monophyly of various sabertoothed
tribes and genera. We quantified skull shape variation in 34 extant and 18 extinct species using size-adjusted linear
variables. These distinguish taxonomic group membership with high accuracy. Patterns of morphospace occupation are
consistent with previous analyses, for example, in showing a size gradient along the primary axis of shape variation and a
separation between large and small-medium cats. By combining the new phylogeny with a molecular tree of extant Felinae,
we built a chronophylomorphospace (a phylogeny superimposed onto a two-dimensional morphospace through time). The
evolutionary history of cats was characterized by two major episodes of morphological divergence, one marking the
separation between saber-toothed and modern cats, the other marking the split between large and small-medium cats.
Conclusions/Significance: Ancestors of large cats in the βPantheraβ lineage tend to occupy, at a much later stage,
morphospace regions previously occupied by saber-toothed cats. The latter radiated out into new morphospace regions
peripheral to those of extant large cats. The separation between large and small-medium cats was marked by considerable
morphologically divergent trajectories early in feline evolution. A chronophylomorphospace has wider applications in
reconstructing temporal transitions across two-dimensional trait spaces, can be used in ecophenotypical and functional
diversity studies, and may reveal novel patterns of morphospace occupation
Management of small bowel volvulus in a patient with simultaneous pancreas-kidney transplantation (SPKT): a case report
There are several surgical complications which can occur following simultaneous pancreas-kidney transplantation (SPKT). Although intestinal obstruction is known to be a common complication after any type of abdominal surgery, the occurrence of small bowel volvulus, which is one of the rare causes of intestinal obstruction, following SPKT has not been published before. A 24-year-old woman suffering from type I diabetes mellitus with complications of nephropathy resulting in end stage renal disease (ESRD), neuropathy and retinopathy underwent SPKT. On the postoperative month 5, she was brought to the emergency service due to abdominal distention with mild abdominal pain. After laboratory research and diagnostic radiological tests had been carried out, she underwent exploratory laparotomy to determine the pathology for acute abdominal symptoms. Intra-operative observation revealed the presence of an almost totally ischemic small bowel which had occurred due to clockwise rotation of the mesentery. Initially, simple derotation was performed to avoid intestinal resection because of her risky condition, particularly for short bowel syndrome, and subsequent intestinal response was favorable. Thus, surgical treatment was successfully employed to solve the problem without any resection procedure. The patient's postoperative follow-up was uneventful and she was discharged from hospital on postoperative day 7. According to our clinical viewpoint, this study emphasizes that if there is even just a suspicion of acute abdominal problem in a patient with SPKT, surgical intervention should be promptly performed to avoid any irreversible result and to achieve a positive outcome
Multimorbidity in bipolar disorder and under-treatment of cardiovascular disease: a cross sectional study
Background: Individuals with serious mental disorders experience poor physical health, especially increased rates of cardiometabolic morbidity and premature morbidity. Recent evidence suggests that individuals with schizophrenia have numerous comorbid physical conditions which may be under-recorded and under-treated but to date very few studies have explored this issue for bipolar disorder.
Methods:We conducted a cross-sectional analysis of a dataset of 1,751,841 registered patients within 314 primary-care practices in Scotland, U.K. Bipolar disorder was identified using Read Codes recorded within electronic medical records. Data on 32 common chronic physical conditions were also assessed. Potential prescribing inequalities were evaluated by analyzing prescribing data for coronary heart disease (CHD) and hypertension.
Results: Compared to controls, individuals with bipolar disorder were significantly less likely to have no recorded physical conditions (OR 0.59, 95% CI 0.54-0.63) and significantly more likely to have one physical condition (OR 1.27, 95% CI 1.16-1.39), two physical conditions (OR 1.45, 95% CI 1.30-1.62) and three or more physical conditions (OR 1.44, 95% CI 1.30-1.64). People with bipolar disorder also had higher rates of thyroid disorders, chronic kidney disease, chronic pain, chronic obstructive airways disease and diabetes but, surprisingly, lower recorded rates of hypertension and atrial fibrillation. People with bipolar disorder and comorbid CHD or hypertension were significantly more likely to be prescribed no antihypertensive or cholesterol-lowering medications compared to controls, and bipolar individuals with CHD or hypertension were significantly less likely to be on 2 or more antihypertensive agents.
Conclusions: Individuals with bipolar disorder are similar to individuals with schizophrenia in having a wide range of comorbid and multiple physical health conditions. They are also less likely than controls to have a primary-care record of cardiovascular conditions such as hypertension and atrial fibrillation. Those with a recorded diagnosis of CHD or hypertension were less likely to be treated with cardiovascular medications and were treated less intensively. This study highlights the high physical healthcare needs of people with bipolar disorder, and provides evidence for a systematic under-recognition and under-treatment of cardiovascular disease in this group
Brain Rhythms Reveal a Hierarchical Network Organization
Recordings of ongoing neural activity with EEG and MEG exhibit oscillations of specific frequencies over a non-oscillatory background. The oscillations appear in the power spectrum as a collection of frequency bands that are evenly spaced on a logarithmic scale, thereby preventing mutual entrainment and cross-talk. Over the last few years, experimental, computational and theoretical studies have made substantial progress on our understanding of the biophysical mechanisms underlying the generation of network oscillations and their interactions, with emphasis on the role of neuronal synchronization. In this paper we ask a very different question. Rather than investigating how brain rhythms emerge, or whether they are necessary for neural function, we focus on what they tell us about functional brain connectivity. We hypothesized that if we were able to construct abstract networks, or βvirtual brainsβ, whose dynamics were similar to EEG/MEG recordings, those networks would share structural features among themselves, and also with real brains. Applying mathematical techniques for inverse problems, we have reverse-engineered network architectures that generate characteristic dynamics of actual brains, including spindles and sharp waves, which appear in the power spectrum as frequency bands superimposed on a non-oscillatory background dominated by low frequencies. We show that all reconstructed networks display similar topological features (e.g. structural motifs) and dynamics. We have also reverse-engineered putative diseased brains (epileptic and schizophrenic), in which the oscillatory activity is altered in different ways, as reported in clinical studies. These reconstructed networks show consistent alterations of functional connectivity and dynamics. In particular, we show that the complexity of the network, quantified as proposed by Tononi, Sporns and Edelman, is a good indicator of brain fitness, since virtual brains modeling diseased states display lower complexity than virtual brains modeling normal neural function. We finally discuss the implications of our results for the neurobiology of health and disease
Attention-dependent modulation of cortical taste circuits revealed by granger causality with signal-dependent noise
We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention
Financial stress
status: publishe
Fine-Scale Movements of the Broadnose Sevengill Shark and Its Main Prey, the Gummy Shark
Information on the fine-scale movement of predators and their prey is important to interpret foraging behaviours and activity patterns. An understanding of these behaviours will help determine predator-prey relationships and their effects on community dynamics. For instance understanding a predator's movement behaviour may alter pre determined expectations of prey behaviour, as almost any aspect of the prey's decisions from foraging to mating can be influenced by the risk of predation. Acoustic telemetry was used to study the fine-scale movement patterns of the Broadnose Sevengill shark Notorynchus cepedianus and its main prey, the Gummy shark Mustelus antarcticus, in a coastal bay of southeast Tasmania. Notorynchus cepedianus displayed distinct diel differences in activity patterns. During the day they stayed close to the substrate (sea floor) and were frequently inactive. At night, however, their swimming behaviour continually oscillated through the water column from the substrate to near surface. In contrast, M. antarcticus remained close to the substrate for the entire diel cycle, and showed similar movement patterns for day and night. For both species, the possibility that movement is related to foraging behaviour is discussed. For M. antarcticus, movement may possibly be linked to a diet of predominantly slow benthic prey. On several occasions, N. cepedianus carried out a sequence of burst speed events (increased rates of movement) that could be related to chasing prey. All burst speed events during the day were across the substrate, while at night these occurred in the water column. Overall, diel differences in water column use, along with the presence of oscillatory behaviour and burst speed events suggest that N. cepedianus are nocturnal foragers, but may opportunistically attack prey they happen to encounter during the day
- β¦