95 research outputs found

    Computational modelling of cancerous mutations in the EGFR/ERK signalling pathway

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund - Copyright @ 2009 Orton et al.BACKGROUND: The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal Regulated Kinase (ERK) pathway is a critical cell signalling pathway that relays the signal for a cell to proliferate from the plasma membrane to the nucleus. Deregulation of the EGFR/ERK pathway due to alterations affecting the expression or function of a number of pathway components has long been associated with numerous forms of cancer. Under normal conditions, Epidermal Growth Factor (EGF) stimulates a rapid but transient activation of ERK as the signal is rapidly shutdown. Whereas, under cancerous mutation conditions the ERK signal cannot be shutdown and is sustained resulting in the constitutive activation of ERK and continual cell proliferation. In this study, we have used computational modelling techniques to investigate what effects various cancerous alterations have on the signalling flow through the ERK pathway. RESULTS: We have generated a new model of the EGFR activated ERK pathway, which was verified by our own experimental data. We then altered our model to represent various cancerous situations such as Ras, B-Raf and EGFR mutations, as well as EGFR overexpression. Analysis of the models showed that different cancerous situations resulted in different signalling patterns through the ERK pathway, especially when compared to the normal EGF signal pattern. Our model predicts that cancerous EGFR mutation and overexpression signals almost exclusively via the Rap1 pathway, predicting that this pathway is the best target for drugs. Furthermore, our model also highlights the importance of receptor degradation in normal and cancerous EGFR signalling, and suggests that receptor degradation is a key difference between the signalling from the EGF and Nerve Growth Factor (NGF) receptors. CONCLUSION: Our results suggest that different routes to ERK activation are being utilised in different cancerous situations which therefore has interesting implications for drug selection strategies. We also conducted a comparison of the critical differences between signalling from different growth factor receptors (namely EGFR, mutated EGFR, NGF, and Insulin) with our results suggesting the difference between the systems are large scale and can be attributed to the presence/absence of entire pathways rather than subtle difference in individual rate constants between the systems.This work was funded by the Department of Trade and Industry (DTI), under their Bioscience Beacon project programme. AG was funded by an industrial PhD studentship from Scottish Enterprise and Cyclacel

    Bioinformatics for the NuGO proof of principle study: analysis of gene expression in muscle of ApoE3*Leiden mice on a high-fat diet using PathVisio

    Get PDF
    Insulin resistance is a characteristic of type-2 diabetes and its development is associated with an increased fat consumption. Muscle is one of the tissues that becomes insulin resistant after high fat (HF) feeding. The aim of the present study is to identify processes involved in the development of HF-induced insulin resistance in muscle of ApOE3*Leiden mice by using microarrays. These mice are known to become insulin resistant on a HF diet. Differential gene expression was measured in muscle using the Affymetrix mouse plus 2.0 array. To get more insight in the processes, affected pathway analysis was performed with a new tool, PathVisio. PathVisio is a pathway editor customized with plug-ins (1) to visualize microarray data on pathways and (2) to perform statistical analysis to select pathways of interest. The present study demonstrated that with pathway analysis, using PathVisio, a large variety of processes can be investigated. The significantly regulated genes in muscle of ApOE3*Leiden mice after 12 weeks of HF feeding were involved in several biological pathways including fatty acid beta oxidation, fatty acid biosynthesis, insulin signaling, oxidative stress and inflammation

    Validity of Resting Energy Expenditure Predictive Equations before and after an Energy-Restricted Diet Intervention in Obese Women

    Get PDF
    Background We investigated the validity of REE predictive equations before and after 12-week energy-restricted diet intervention in Spanish obese (30 kg/m2>BMI<40 kg/m2) women. Methods We measured REE (indirect calorimetry), body weight, height, and fat mass (FM) and fat free mass (FFM, dual X-ray absorptiometry) in 86 obese Caucasian premenopausal women aged 36.7±7.2 y, before and after (n = 78 women) the intervention. We investigated the accuracy of ten REE predictive equations using weight, height, age, FFM and FM. Results At baseline, the most accurate equation was the Mifflin et al. (Am J Clin Nutr 1990; 51: 241–247) when using weight (bias:−0.2%, P = 0.982), 74% of accurate predictions. This level of accuracy was not reached after the diet intervention (24% accurate prediction). After the intervention, the lowest bias was found with the Owen et al. (Am J Clin Nutr 1986; 44: 1–19) equation when using weight (bias:−1.7%, P = 0.044), 81% accurate prediction, yet it provided 53% accurate predictions at baseline. Conclusions There is a wide variation in the accuracy of REE predictive equations before and after weight loss in non-morbid obese women. The results acquire especial relevance in the context of the challenging weight regain phenomenon for the overweight/obese population.The present study was supported by the University of the Basque Country (UPV 05/80), Social Foundation of the Caja Vital- Kutxa and by the Department of Health of the Government of the Basque Country (2008/111062), and by the Spanish Ministry of Science and Innovation (RYC-2010-05957)

    Long-term changes in lowland calcareous grassland plots using Tephroseris integrifolia subsp. integrifolia as an indicator species

    Get PDF
    We investigated the changes to calcareous grassland plots within protected sites, and whether Tephroseris integrifolia subsp. integrifolia can act as a useful indicator species for re-visitation studies within vegetation predicted to remain relatively stable. Twenty-two plots located across lowland England and all formerly containing T. integrifolia were re-surveyed following the methodology used in the original survey undertaken in the 1960s. Pseudo-turnover and between-observer bias were minimised by sampling replicate quadrats at each fixed plot using a single surveyor and at a similar time of year as the original survey. Qualitative details concerning grazing management were obtained for all sites. In contrast to other long-term re-visitation studies, all our study plots were intact and retained diverse, herb-rich vegetation, demonstrating the value of site protection. However, there were clear shifts in vegetation composition, most notably where T. integrifolia was absent, as shown by an increase in Ellenberg fertility and moisture signifying nutrient enrichment, and a decrease in the cover of low-growing, light-demanding specialists, with a change likely to be associated predominantly with grazing management. Whereas in the mid-20th century the greatest threat to calcareous grassland was habitat loss, undergrazing or temporary neglect now appears to pose the principal threat. Distinctive species such as T. integrifolia with marked sensitivity to habitat change provide a potentially useful tool for rapid assessment and monitoring of site quality. Focusing monitoring on such species allows non-expert observers to recognise the early stages of habitat degradation, providing, in effect, a “health check” on individual sites and groups of sites
    corecore