998 research outputs found

    Quantum corrections to the conductivity of fermion - gauge field models: Application to half filled Landau level and high-TcT_c superconductors

    Full text link
    We calculate the Altshuler-Aronov type quantum correction to the conductivity of 2d2d charge carriers in a random potential (or random magnetic field) coupled to a transverse gauge field. The gauge fields considered simulate the effect of the Coulomb interaction for the fractional quantum Hall state at half filling and for the tJt-J model of high-TcT_c superconducting compounds. We find an unusually large quantum correction varying linearly or quadratically with the logarithm of temperature, in different temperature regimes.Comment: 12 pages REVTEX, 1 figure. The figure is added and minor misprints are correcte

    Single-shot d-scan technique for ultrashort laser pulse characterization using transverse second-harmonic generation in random nonlinear crystals

    Get PDF
    We demonstrate a novel dispersion-scan (d-scan) scheme for single-shot temporal characterization of ultrashort laser pulses. The novelty of this method relies on the use of a highly dispersive crystal featuring antiparallel nonlinear domains with a random distribution and size. This crystal, capable of generating a transverse second-harmonic signal, acts simultaneously as the dispersive element and the nonlinear medium of the d-scan device. The resulting in-line architecture makes the technique very simple and robust, allowing the acquisition of single-shot d-scan traces in real time. The retrieved pulses are in very good agreement with independent frequency-resolved optical grating measurements. We also apply the new single-shot d-scan to a terawatt-class laser equipped with a programmable pulse shaper, obtaining an excellent agreement between the applied and the d-scan retrieved dispersions

    A complex of BRCA2 and PP2A-B56 is required for DNA repair by homologous recombination

    Get PDF
    Mutations in the tumour suppressor gene BRCA2 are associated with predisposition to breast and ovarian cancers. BRCA2 has a central role in maintaining genome integrity by facilitating the repair of toxic DNA double-strand breaks (DSBs) by homologous recombination (HR). BRCA2 acts by controlling RAD51 nucleoprotein filament formation on resected single-stranded DNA, but how BRCA2 activity is regulated during HR is not fully understood. Here, we delineate a pathway where ATM and ATR kinases phosphorylate a highly conserved region in BRCA2 in response to DSBs. These phosphorylations stimulate the binding of the protein phosphatase PP2A-B56 to BRCA2 through a conserved binding motif. We show that the phosphorylation-dependent formation of the BRCA2-PP2A-B56 complex is required for efficient RAD51 filament formation at sites of DNA damage and HR-mediated DNA repair. Moreover, we find that several cancer-associated mutations in BRCA2 deregulate the BRCA2-PP2A-B56 interaction and sensitize cells to PARP inhibition. Collectively, our work uncovers PP2A-B56 as a positive regulator of BRCA2 function in HR with clinical implications for BRCA2 and PP2A-B56 mutated cancers

    How does Inflation Depend Upon the Nature of Fluids Filling Up the Universe in Brane World Scenario

    Full text link
    By constructing different parameters which are able to give us the information about our universe during inflation,(specially at the start and the end of the inflationary universe) a brief idea of brane world inflation is given in this work. What will be the size of the universe at the end of inflation,i.e.,how many times will it grow than today's size is been speculated and analysed thereafter. Different kinds of fluids are taken to be the matter inside the brane. It is observed that in the case of highly positive pressure grower gas like polytropic,the size of the universe at the end of inflation is comparitively smaller. Whereas for negative pressure creators (like chaplygin gas) this size is much bigger. Except thse two cases, inflation has been studied for barotropic fluid and linear redshift parametrization ω(z)=ω0+ω1z\omega(z) = \omega_{0} + \omega_{1} z too. For them the size of the universe after inflation is much more high. We also have seen that this size does not depend upon the potential energy at the end of the inflation. On the contrary, there is a high impact of the initial potential energy upon the size of inflation.Comment: 20 page

    The T2K ND280 Off-Axis Pi-Zero Detector

    Full text link
    The Pi-Zero detector (P{\O}D) is one of the subdetectors that makes up the off-axis near detector for the Tokai-to-Kamioka (T2K) long baseline neutrino experiment. The primary goal for the P{\O}D is to measure the relevant cross sections for neutrino interactions that generate pi-zero's, especially the cross section for neutral current pi-zero interactions, which are one of the dominant sources of background to the electron neutrino appearance signal in T2K. The P{\O}D is composed of layers of plastic scintillator alternating with water bags and brass sheets or lead sheets and is one of the first detectors to use Multi-Pixel Photon Counters (MPPCs) on a large scale.Comment: 17 pages, submitted to NIM

    Combined constraints on modified Chaplygin gas model from cosmological observed data: Markov Chain Monte Carlo approach

    Full text link
    We use the Markov Chain Monte Carlo method to investigate a global constraints on the modified Chaplygin gas (MCG) model as the unification of dark matter and dark energy from the latest observational data: the Union2 dataset of type supernovae Ia (SNIa), the observational Hubble data (OHD), the cluster X-ray gas mass fraction, the baryon acoustic oscillation (BAO), and the cosmic microwave background (CMB) data. In a flat universe, the constraint results for MCG model are, Ωbh2=0.022630.00162+0.00184\Omega_{b}h^{2}=0.02263^{+0.00184}_{-0.00162} (1σ1\sigma) 0.00195+0.00213^{+0.00213}_{-0.00195} (2σ)(2\sigma), Bs=0.77880.0723+0.0736B_{s}=0.7788^{+0.0736}_{-0.0723} (1σ1\sigma) 0.0904+0.0918^{+0.0918}_{-0.0904} (2σ)(2\sigma), α=0.10790.2539+0.3397\alpha=0.1079^{+0.3397}_{-0.2539} (1σ1\sigma) 0.2911+0.4678^{+0.4678}_{-0.2911} (2σ)(2\sigma), B=0.001890.00756+0.00583B=0.00189^{+0.00583}_{-0.00756} (1σ1\sigma) 0.00915+0.00660^{+0.00660}_{-0.00915} (2σ)(2\sigma), and H0=70.7113.142+4.188H_{0}=70.711^{+4.188}_{-3.142} (1σ1\sigma) 4.149+5.281^{+5.281}_{-4.149} (2σ)(2\sigma).Comment: 12 pages, 1figur
    corecore