15 research outputs found

    Modern cosmologies from empty Kaluza-Klein solutions in 5D

    Full text link
    We show that the empty five-dimensional solutions of Davidson-Sonnenschtein-Vozmediano, {\em Phys. Rev.} {\bf D32} (1985)1330, in the "old" Kaluza-Klein gravity, under appropriate interpretation can generate an ample variety of cosmological models in 4D, which include the higher-dimensional modifications to general relativity predicted by "modern" versions of noncompactified 5D gravity as, e.g., induced-matter and braneworld theories. This is the first time that these solutions are investigated in a systematic way as embeddings for cosmological models in 4D. They provide a different formulation, which is complementary to the approaches used in current versions of 5D relativity.Comment: Accepted for publication in JHE

    Spinning Strings, Black Holes and Stable Closed Timelike Geodesics

    Full text link
    The existence and stability under linear perturbation of closed timelike curves in the spacetime associated to Schwarzschild black hole pierced by a spinning string are studied. Due to the superposition of the black hole, we find that the spinning string spacetime is deformed in such a way to allow the existence of closed timelike geodesics.Comment: 5 pages, RevTex4, some corrections and new material adde

    Neutral perfect fluids of Majumdar-type in general relativity

    Full text link
    We consider the extension of the Majumdar-type class of static solutions for the Einstein-Maxwell equations, proposed by Ida to include charged perfect fluid sources. We impose the equation of state ρ+3p=0\rho+3p=0 and discuss spherically symmetric solutions for the linear potential equation satisfied by the metric. In this particular case the fluid charge density vanishes and we locate the arising neutral perfect fluid in the intermediate region defined by two thin shells with respective charges QQ and Q-Q. With its innermost flat and external (Schwarzschild) asymptotically flat spacetime regions, the resultant condenser-like geometries resemble solutions discussed by Cohen and Cohen in a different context. We explore this relationship and point out an exotic gravitational property of our neutral perfect fluid. We mention possible continuations of this study to embrace non-spherically symmetric situations and higher dimensional spacetimes.Comment: 9 page

    Gravitational hedgehog, stringy hedgehog and stringy sphere

    Full text link
    We investigate the solutions of Einstein equations such that a hedgehog solution is matched to different exterior or interior solutions via a spherical shell. In the case where both the exterior and the interior regions are hedgehog solutions or one of them is flat, the resulting spherical shell becomes a stringy shell. We also consider more general matchings and see that in this case the shell deviates from its stringy character.Comment: 11 page

    Inhomogeneous cosmologies with Q-matter and varying Λ\Lambda

    Full text link
    Starting from the inhomogeneous shear--free Nariai metric we show, by solving the Einstein--Klein--Gordon field equations, how a self--interacting scalar field plus a material fluid, a variable cosmological term and a heat flux can drive the universe to its currently observed state of homogeneous accelerated expansion. A quintessence scenario where power-law inflation takes place for a string-motivated potential in the late--time dominated field regime is proposed.Comment: 11 pages, Revtex. To be published in Physical Review

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Dark energy as a mirage

    Full text link
    Motivated by the observed cosmic matter distribution, we present the following conjecture: due to the formation of voids and opaque structures, the average matter density on the path of the light from the well-observed objects changes from Omega_M ~ 1 in the homogeneous early universe to Omega_M ~ 0 in the clumpy late universe, so that the average expansion rate increases along our line of sight from EdS expansion Ht ~ 2/3 at high redshifts to free expansion Ht ~ 1 at low redshifts. To calculate the modified observable distance-redshift relations, we introduce a generalized Dyer-Roeder method that allows for two crucial physical properties of the universe: inhomogeneities in the expansion rate and the growth of the nonlinear structures. By treating the transition redshift to the void-dominated era as a free parameter, we find a phenomenological fit to the observations from the CMB anisotropy, the position of the baryon oscillation peak, the magnitude-redshift relations of type Ia supernovae, the local Hubble flow and the nucleosynthesis, resulting in a concordant model of the universe with 90% dark matter, 10% baryons, no dark energy, 15 Gyr as the age of the universe and a natural value for the transition redshift z_0=0.35. Unlike a large local void, the model respects the cosmological principle, further offering an explanation for the late onset of the perceived acceleration as a consequence of the forming nonlinear structures. Additional tests, such as quantitative predictions for angular deviations due to an anisotropic void distribution and a theoretical derivation of the model, can vindicate or falsify the interpretation that light propagation in voids is responsible for the perceived acceleration.Comment: 33 pages, 2 figs; v2: minor clarifications, results unchanged; v3: matches the version published in General Relativity and Gravitatio
    corecore