18 research outputs found

    Assessing the role of mini-applications in predicting key performance characteristics of scientific and engineering applications

    Full text link
    Computational science and engineering application programs are typically large, complex, and dynamic, and are often constrained by distribution limitations. As a means of making tractable rapid explorations of scientific and engineering application programs in the context of new, emerging, and future computing architectures, a suite of "miniapps" has been created to serve as proxies for full scale applications. Each miniapp is designed to represent a key performance characteristic that does or is expected to significantly impact the runtime performance of an application program. In this paper we introduce a methodology for assessing the ability of these miniapps to effectively represent these performance issues. We applied this methodology to three miniapps, examining the linkage between them and an application they are intended to represent. Herein we evaluate the fidelity of that linkage. This work represents the initial steps required to begin to answer the question, "Under what conditions does a miniapp represent a key performance characteristic in a full app?

    Near-infrared spectroscopy identifies the colony and nest of origin of weaver ants, Oecophylla smaragdina

    No full text
    The ability of social insects to differentiate between colony members and others is essential for the survival of the colony. It enables individuals to direct altruistic behavior towards colony mates, while protecting the colony from intruders. Colonies have a distinct chemical signature that facilitates colony-mate recognition. However, in large polydomous colonies, this signal is likely to be modified by factors unique to each nest. We demonstrate, using near-infrared spectroscopy (NIRS), that individual weaver ants, Oecophylla smaragdina, can be differentiated with respect to their colony and nest of origin. 76.5% of individuals from four colonies could be correctly assigned to their colony of origin; and 79.6% of individuals could be assigned to the correct nest (of two) within their colony. Despite the differences between nests within colonies, in most cases individuals from one nest were more similar to individuals from the other nest within the colony than they were to individuals from any nest outside the colony. Therefore, a distinctive colony identity is maintained despite differences between nests within colonies. We discuss the advantages of using NIRS as a faster and less expensive alternative to the analysis of cuticular hydrocarbons following extraction and identification with gas chromatography/mass spectroscopy

    Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies

    No full text
    Genetic diversity can benefit social insects by providing variability in immune defences against parasites and pathogens. However, social parasites of ants infest colonies and not individuals, and for them a different relationship between genetic diversity and resistance may exist. Here, we investigate the genetic variation, assessed using up to 12 microsatellite loci, of workers in 91 Formica lemani colonies in relation to their infestation by the specialist social parasite Microdon mutabilis. At the main study site, workers in infested colonies exhibited lower relatedness and higher estimated queen numbers, on average, than uninfested ones. Additionally, estimated queen numbers were negatively correlated with estimated average numbers of mates per queen within infested colonies. At another site, infested colonies also exhibited significantly lower worker relatedness, and estimated queen numbers were comparable in trend. In contrast, in two populations of F. lemani where M. mutabilis was absent, relatedness within colonies was high (40 and 90% with RO0.6). While high genetic variation can benefit social insects by increasing their resistance to pathogens, there may be a cost in the increased likelihood of infiltration by social parasites owing to greater variation in nestmate recognition cues. This study provides the first empirical test of this hypothesis

    The medicalistion of shyness: from social misfits to social fitness

    No full text
    Shyness has become an `unhealthy' state of mind for individuals living in contemporary Western societies. Insofar as its behavioural `symptoms' imply a failure to achieve certain cultural values, such as assertiveness, self-expression and loquacious vocality, shyness is increasingly defined as a problem for which people can, and should, be treated. This paper first critically discusses the idea that we are witnessing a new `cultural epidemic' of shyness, as evidenced by increasing rates of diagnosis for Social Phobia, Social Anxiety Disorder and Avoidant Personality Disorder. It then examines three main dimensions of the medicalisation of shyness: biomedical and genetic approaches, the therapeutic interventions of cognitive-behaviour therapy and `shyness clinics', and the disciplinary regimes imposed by self-help books and websites. Within a cultural climate of pervasive anxiety and privatised risk, the medicalisation of shyness suggests a powerful new way of defining and managing certain kinds of deviant identities, but we can also find some evidence of resistance to this approach

    The influence of sociality on the conservation biology of social insects.

    No full text
    Social insects (ants, bees, wasps and termites) as a group are species rich and ecologically dominant. Many are outstanding “ecological engineers”, or providers of “ecosystem services”, or potential bioindicator species. Few social insects are currently formally classified as Threatened, but this is almost certainly due to a lack of information on population sizes and trends in scarce species. The main influence that sociality has on threats faced by social insects is in reducing effective population sizes, increasing population genetic subdivision and possibly reducing levels of genetic variation relative to solitary species. The main influence that sociality has on threats from social insects is via its role in the ecological success of invasive species, which frequently pose a major hazard to native biotas. In some cases, social features underpinning ecological success in the original range almost certainly contribute to the success of invasive social insects. However, recent studies show or strongly suggest that, in some of the most notoriously invasive populations of ants, bees and wasps, novel social traits have arisen that greatly enhance the rate of spread and ecological competitiveness of these populations. Sociality can therefore represent either a liability or an asset in its contribution to the persistence of social insect populations
    corecore