240 research outputs found

    High-pressure Raman spectroscopy on low albite

    Get PDF
    The pressure dependence of the Raman spectrum of low albite, NaAlSi3O8, has been investigated from 0.0001 to 10.4 GPa, at room temperature, on a single crystal compressed hydrostatically in a diamond anvil cell. The Raman vibrational features move to higher wavenumbers \u3c5i with increasing pressure, due to the decrease in the unit-cell volume corresponding to a drastic shrinkage of the framework. The slopes \u394\u3c5i/\u394P of the four investigated bending modes (i.e. at 478, 507, 578 and 815 cm 121, at 0.0001 GPa) show evident changes at ~6.5 and ~8.5 GPa. This behaviour may be ascribed, in the absence of phase transitions, to the evolution of the compressional mechanisms at the atomic scale found in previous high-pressure studies on albite (mainly by X-ray diffraction), through a model based on tilts of rigid tetrahedra. The Raman data of this study allowed also to bracket the pressure range in which the occurrence of the first change in the compressional behaviour was found by X-ray diffraction

    High-pressure Raman spectroscopy of Ca(Mg,Co)Si2O6 and Ca(Mg,Co)Ge2O6 clinopyroxenes

    Get PDF
    In situ high-pressure Raman spectra were collected on four pyroxenes, with composition CaCoSi2O6, CaMgSi2O6, CaCoGe2O6 and CaMgGe2O6, up to P = 7.6 and 8.3 GPa for silicates and germanates, respectively. The peak wavenumbers \ucf\u85i increase almost linearly with pressure; the slope d\ucf\u85i/dP is more pronounced for the modes at higher wavenumbers, and higher in germanates than in silicates. No phase transition or change in the compressional behaviour was observed within the investigated P-range. The strong dependence of the peak position with pressure of the high energy stretching modes is due to the high sensitivity of the vibrational frequencies probed by Raman spectroscopy to subtle changes in the tetrahedral deformation, which are overlooked by single-crystal X-ray diffraction
    • …
    corecore