4 research outputs found

    Preparation and Characterization of Antimony Doped Tin Oxide Thin Films Synthesized by Co-Evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation

    Get PDF
    Tin oxide (SnO2) thin films are having promising properties such as high visible transmittance and low electric resistivity, makes them very important transparent conductor in a variety of optoelectronics devices. Further, doping with pentavalent impurity such as Antimony (Sb) enhances its conductivity considerably. In order to study the effect of Antimony doping, Antimony doped tin oxide (SnO2 : Sb) thin films have been prepared by the co-evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation (PATE) in oxygen (O2) partial pressure at various doping level from 4% to 25%. The influence of various Sb doping levels on the compositional, electrical, optical and structural properties have been investigated using Energy Dispersive X-ray (EDX) spectroscopy, Ultraviolet-Visible (UV-VIS) transmission spectroscopy, four-probe resistivity measurement and X-ray Diffraction (XRD), respectively. EDX studies confirmed the different Sb doping levels in the grown films from 4 % to 25 %, while electrical resistivity is obtained in range of 0.36 to 9.5 Ohmcm using four-probe setup for 4 % to 25 % Sb doping levels. Transmittance spectra measured in UV-VIS range for Sb doped films show reduction in an average transmittance in respect to increase in Sb doping levels in the grown films. Whereas, XRD analysis reveals that higher Sb doping of 25 % induce the precipitation of antimony oxide (Sb2O3) phase and its precipitation suppressed the growth of SnO2 peaks as well as responsible for reduction in conductivity and transparency. The best electrical resistivity of optimized SnO2 : Sb (5 %) is 0.36 Ohmcm without deteriorating the high (~ 80 %) average transmittance in the wavelength region 300-800 nm in comparison to undoped SnO2 film (6.57 Ohmcm) , confirm the usefulness of SnO2 : Sb (5 %) films for device applications. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3102

    Preparation and Characterization of Antimony Doped Tin Oxide Thin Films Synthesized by Co-Evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation

    Get PDF
    Tin oxide (SnO2) thin films are having promising properties such as high visible transmittance and low electric resistivity, makes them very important transparent conductor in a variety of optoelectronics devices. Further, doping with pentavalent impurity such as Antimony (Sb) enhances its conductivity considerably. In order to study the effect of Antimony doping, Antimony doped tin oxide (SnO2 : Sb) thin films have been prepared by the co-evaporation of Sn and Sb using Plasma Assisted Thermal Evaporation (PATE) in oxygen (O2) partial pressure at various doping level from 4% to 25%. The influence of various Sb doping levels on the compositional, electrical, optical and structural properties have been investigated using Energy Dispersive X-ray (EDX) spectroscopy, Ultraviolet-Visible (UV-VIS) transmission spectroscopy, four-probe resistivity measurement and X-ray Diffraction (XRD), respectively. EDX studies confirmed the different Sb doping levels in the grown films from 4 % to 25 %, while electrical resistivity is obtained in range of 0.36 to 9.5 Ohmcm using four-probe setup for 4 % to 25 % Sb doping levels. Transmittance spectra measured in UV-VIS range for Sb doped films show reduction in an average transmittance in respect to increase in Sb doping levels in the grown films. Whereas, XRD analysis reveals that higher Sb doping of 25 % induce the precipitation of antimony oxide (Sb2O3) phase and its precipitation suppressed the growth of SnO2 peaks as well as responsible for reduction in conductivity and transparency. The best electrical resistivity of optimized SnO2 : Sb (5 %) is 0.36 Ohmcm without deteriorating the high (~ 80 %) average transmittance in the wavelength region 300-800 nm in comparison to undoped SnO2 film (6.57 Ohmcm) , confirm the usefulness of SnO2 : Sb (5 %) films for device applications. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/3102

    Er2O3 coating by reactive magnetron sputtering: Effect of oxygen supply and erbium pre-layer deposition

    Get PDF
    Erbium oxide (erbia/Er2O3) is one of the leading candidate coating types to address the issues of tritium permeation reduction and Magnetohydrodynamic (MHD) drag reduction in fusion reactor with liquid Lead–Lithium (Pb–Li) or molten salt Flibe (2LiF+BeF2) as the coolant and breeder materials. The electrical resistivity, hydrogen/deuterium permeation reduction property, liquid metal corrosion, radiation effects and deposition techniques are major areas of research on erbia coating. Though it is having a single stable phase of cubic structure up to 2300Β°C, it is known to develop metastable monoclinic phase especially in sputter coating methods. We grow erbia by reactive magnetron sputter coating method and study the phase formation, electrical, microstructural and optical dielectric properties. The effects of erbium metal pre-layer deposition, post annealing in oxygen rich vacuum and oxygen to argon gas feed ratio are studied keeping other parameters constant. The film grows in mixed phase of cubic and monoclinic structures when erbium metal pre-layer is deposited on the P91 steel substrate and in pure monoclinic phase in absence of the pre-layer. Post annealing seems to partially convert monoclinic into cubic phase in the mixed phase coating. Better crystallization and slightly more surface roughness is observed in the sample processed with higher oxygen to argon ratio. DC resistivity is found in 1015Ω*cm range and it is marginally more in the sample processed with more oxygen. The spectroscopic ellipsometry on these films to obtain optical dielectric properties gives encouraging results in terms of close match of the thickness and roughness values with those obtained from SEM and AFM respectively. Systematic study of optical dielectric property suggests a trend consistent with DC resistivity
    corecore