17 research outputs found

    Observation of Zitterbewegung in photonic microcavities

    Get PDF
    We present and experimentally study the effects of the photonic spin–orbit coupling on the real space propagation of polariton wavepackets in planar semiconductor microcavities and polaritonic analogues of graphene. In particular, we demonstrate the appearance of an analogue Zitterbewegung effect, a term which translates as ‘trembling motion’ in English, which was originally proposed for relativistic Dirac electrons and consisted of the oscillations of the centre of mass of a wavepacket in the direction perpendicular to its propagation. For a planar microcavity, we observe regular Zitterbewegung oscillations whose amplitude and period depend on the wavevector of the polaritons. We then extend these results to a honeycomb lattice of coupled microcavity resonators. Compared to the planar cavity, such lattices are inherently more tuneable and versatile, allowing simulation of the Hamiltonians of a wide range of important physical systems. We observe an oscillation pattern related to the presence of the spin-split Dirac cones in the dispersion. In both cases, the experimentally observed oscillations are in good agreement with theoretical modelling and independently measured bandstructure parameters, providing strong evidence for the observation of Zitterbewegung

    Brain structural correlates of insomnia severity in 1053 individuals with major depressive disorder : results from the ENIGMA MDD Working Group

    Get PDF
    It has been difficult to find robust brain structural correlates of the overall severity of major depressive disorder (MDD). We hypothesized that specific symptoms may better reveal correlates and investigated this for the severity of insomnia, both a key symptom and a modifiable major risk factor of MDD. Cortical thickness, surface area and subcortical volumes were assessed from T1-weighted brain magnetic resonance imaging (MRI) scans of 1053 MDD patients (age range 13-79 years) from 15 cohorts within the ENIGMA MDD Working Group. Insomnia severity was measured by summing the insomnia items of the Hamilton Depression Rating Scale (HDRS). Symptom specificity was evaluated with correlates of overall depression severity. Disease specificity was evaluated in two independent samples comprising 2108 healthy controls, and in 260 clinical controls with bipolar disorder. Results showed that MDD patients with more severe insomnia had a smaller cortical surface area, mostly driven by the right insula, left inferior frontal gyrus pars triangularis, left frontal pole, right superior parietal cortex, right medial orbitofrontal cortex, and right supramarginal gyrus. Associations were specific for insomnia severity, and were not found for overall depression severity. Associations were also specific to MDD; healthy controls and clinical controls showed differential insomnia severity association profiles. The findings indicate that MDD patients with more severe insomnia show smaller surfaces in several frontoparietal cortical areas. While explained variance remains small, symptom-specific associations could bring us closer to clues on underlying biological phenomena of MDD
    corecore