82 research outputs found

    Instantons from Low Energy String Actions

    Get PDF
    We look for instanton solutions in a class of two scalar field gravity models, which includes the low energy string action in four dimensions. In models where the matter field has a potential with a false vacuum, we find that non-singular instantons exist as long as the Dilaton field found in string theory has a potential with a minimum, and provide an example of such an instanton. The class of singular instanton solutions are also examined, and we find that depending on the parameter values, the volume factor of the Euclidean region does not always vanish fast enough at the singularity to make the action finite.Comment: revtex 6 pages with 3 figures. Minor numerical correction mad

    Scaling in a SU(2)/Z_3 model of cosmic superstring networks

    Get PDF
    Motivated by recent developments in superstring theory in the cosmological context, we examine a field theory which contains string networks with 3-way junctions. We perform numerical simulations of this model, identify the length scales of the network that forms, and provide evidence that the length scales tend towards a scaling regime, growing in proportion to time. We infer that the presence of junctions does not in itself cause a superstring network to dominate the energy density of the early Universe.Comment: 12pp, 3 fig

    Vortex-Antivortex Pair Production in a First Order Phase Transition

    Full text link
    We carry out numerical simulation of a first order phase transition in 2+1 dimensions by randomly nucleating bubbles, and study the formation of global U(1) vortices. Bubbles grow and coalesce and vortices are formed at junctions of bubbles via standard Kibble mechanism as well as due to a new mechanism, recently proposed by us, where defect-antidefect pairs are produced due to field oscillations. We make a comparative study of the contribution of both of these mechanisms for vortex production. We find that, for high nucleation rate of bubbles, vortex-antivortex pairs produced via the new mechanism have overlapping configurations, and annihilate quickly; so only those vortices survive till late which are produced via the Kibble mechanism. However, for low nucleation rates, bubble collisions are energetic enough to lead to many well separated vortex-antivortex pairs being produced via the new mechanism. For example, in a simulation involving nucleation of 20 bubbles, a total of 14 non-overlapping vortices and antivortices formed via this new mechanism of pair creation (6 of them being very well separated), as compared to 6 vortices and antivortices produced via the Kibble mechanism. Our results show the possibility that in extremely energetic bubble collisions, such as those in the inflationary models of the early Universe, this new mechanism may drastically affect the defect production scenario.Comment: 8 pages, Revtex, 14 figures. Figs.1a,b and 5a,d are included, rest are availaible on reques

    On the evolution of cosmic-superstring networks

    Full text link
    We model the behaviour of a network of interacting (p,q) strings from IIB string theory by considering a field theory containing multiple species of string, allowing us to study the effect of non-intercommuting events due to two different species crossing each other. This then has the potential for a string dominated Universe with the network becoming so tangled that it freezes. We give numerical evidence, explained by a one-scale model, that such freezing does not take place, with the network reaching a scaling limit where its density relative to the background increases with N, the number of string types.Comment: Extra references added showing constraints on cosmic superstrings, 7 pages, 7 figure

    Dynamics of Logamediate and Intermediate Scenarios in the Dark Energy Filled Universe

    Full text link
    We have considered a model of two component mixture i.e., mixture of Chaplygin gas and barotropic fluid with tachyonic field. In the case, when they have no interaction then both of them retain their own properties. Let us consider an energy flow between barotropic and tachyonic fluids. In both the cases we find the exact solutions for the tachyonic field and the tachyonic potential and show that the tachyonic potential follows the asymptotic behavior. We have considered an interaction between these two fluids by introducing a coupling term. Finally, we have considered a model of three component mixture i.e., mixture of tachyonic field, Chaplygin gas and barotropic fluid with or without interaction. The coupling functions decays with time indicating a strong energy flow at the initial period and weak stable interaction at later stage. To keep the observational support of recent acceleration we have considered two particular forms (i) Logamediate Scenario and (ii) Intermediate Scenario, of evolution of the Universe. We have examined the natures of the recent developed statefinder parameters and slow-roll parameters in both scenarios with and without interactions in whole evolution of the universe.Comment: 28 pages, 20 figure

    Global and Local D-vortices

    Full text link
    Codimension-two objects on a system of brane-antibrane are studied in the context of Born-Infeld type effective field theory with a complex tachyon and U(1)×\timesU(1) gauge fields. When the radial electric field is turned on in D2Dˉ{\bar {\rm D}}2, we find static regular global and local D-vortex solutions which could be candidates of straight cosmic D-strings in a superstring theory. A natural extension to DF-strings is briefly discussed.Comment: 24 pages, 10 eps figure

    Cosmological Tracking Solutions

    Get PDF
    A substantial fraction of the energy density of the universe may consist of quintessence in the form of a slowly-rolling scalar field. Since the energy density of the scalar field generally decreases more slowly than the matter energy density, it appears that the ratio of the two densities must be set to a special, infinitesimal value in the early universe in order to have the two densities nearly coincide today. Recently, we introduced the notion of tracker fields to avoid this initial conditions problem. In the paper, we address the following questions: What is the general condition to have tracker fields? What is the relation between the matter energy density and the equation-of-state of the universe imposed by tracker solutions? And, can tracker solutions explain why quintessence is becoming important today rather than during the early universe

    Tunneling and propagation of vacuum bubbles on dynamical backgrounds

    Full text link
    In the context of bubble universes produced by a first-order phase transition with large nucleation rates compared to the inverse dynamical time scale of the parent bubble, we extend the usual analysis to non-vacuum backgrounds. In particular, we provide semi-analytic and numerical results for the modified nucleation rate in FLRW backgrounds, as well as a parameter study of bubble walls propagating into inhomogeneous (LTB) or FLRW spacetimes, both in the thin-wall approximation. We show that in our model, matter in the background often prevents bubbles from successful expansion and forces them to collapse. For cases where they do expand, we give arguments why the effects on the interior spacetime are small for a wide range of reasonable parameters and discuss the limitations of the employed approximations.Comment: 29 pages, 8 figures, typos corrected, matches published versio

    Particle-Like Description in Quintessential Cosmology

    Full text link
    Assuming equation of state for quintessential matter: p=w(z)ρp=w(z)\rho, we analyse dynamical behaviour of the scale factor in FRW cosmologies. It is shown that its dynamics is formally equivalent to that of a classical particle under the action of 1D potential V(a)V(a). It is shown that Hamiltonian method can be easily implemented to obtain a classification of all cosmological solutions in the phase space as well as in the configurational space. Examples taken from modern cosmology illustrate the effectiveness of the presented approach. Advantages of representing dynamics as a 1D Hamiltonian flow, in the analysis of acceleration and horizon problems, are presented. The inverse problem of reconstructing the Hamiltonian dynamics (i.e. potential function) from the luminosity distance function dL(z)d_{L}(z) for supernovae is also considered.Comment: 35 pages, 26 figures, RevTeX4, some applications of our treatment to investigation of quintessence models were adde

    Evolution of cosmic superstring networks: a numerical simulation

    Full text link
    We study the formation and evolution of an interconnected string network in large-scale field-theory numerical simulations, both in flat spacetime and in expanding universe. The network consists of gauge U(1) strings of two different kinds and their bound states, arising due to an attractive interaction potential. We find that the network shows no tendency to ``freeze'' and appears to approach a scaling regime, with all characteristic lengths growing linearly with time. Bound strings constitute only a small fraction of the total string length in the network.Comment: 16 pages, 13 figures; Minor changes; Matches published versio
    • 

    corecore