21 research outputs found

    Metamagnetic and electronic transitions in charge-ordered Nd0.50Ca0.47Ba0.03MnO3 manganite

    Full text link
    The ABO3 type charge-ordered antiferromagnetic Nd0.50Ca0.50MnO3 (NCMO) manganite is doped at A-site by 3 % of Ba2+ for Ca2+. The resulting system, Nd0.50Ca0.47Ba0.03MnO3 (NCBMO), is studied for the effects of Ba doping on the magnetic and electronic properties. On application of magnetic field to NCBMO, strongly correlated successive sharp metamagnetic and electronic transitions are observed from antiferromagnetic-insulating to ferromagnetic-metallic state at 2.5 K. The critical magnetic field (Hc) required for metamagnetism is found to reduce drastically from 15 T for undoped NCMO to 3 T for NCBMO. On increasing the temperature, the Hc of NCBMO passes through a minimum. This behavior of Hc of NCBMO contrasts to that of NCMO. The results are discussed in context of A-site cation disorder and size

    Large Low Temperature Magnetoresistance and Magnetic Anomalies in Tb2_2PdSi3_3 and Dy2_2PdSi3_3

    Full text link
    The results of heat-capacity, magnetic susceptibility, electrical resistivity and magnetoresistance (Δρ/ρ)(\Delta \rho/\rho) measurements on the compounds Tb2_2PdSi3_3 and Dy2_2PdSi3_3, are reported. The results establish that these compounds undergo long-range magnetic ordering (presumably with a complex magnetic structure) below (Tc=) 23 and 8 K respectively. The Δρ/ρ\Delta \rho/\rho is negative in the vicinity of Tc and the magnitude grows as Tc is approached from higher temperature as in the case of well-known giant magnetoresistance systems (La manganite based perovskites); this is attributed to the formation of some kind of magnetic polarons. The magnitude of magnetoresistance at low temperatures is quite large, for instance, about 30% in the presence of 60 kOe field at 5 K in the Dy sample.Comment: 4 pages, 3 figures, RevTe

    The flux pinning force and vortex phase diagram of single crystal FeTe0.60Se0.40

    Full text link
    The flux pinning force density (Fp) of the single crystalline FeTe0.60Se0.40 superconductor has been calculated from the magnetization measurements. The normalized Fp versus h (=H/Hirr) curves are scaled using the Dew-Hughes formula to underline the pinning mechanism in the compound. The obtained values of pinning parameters p and q indicate the vortex pinning by the mixing of the surface and the point core pinning of the normal centers. The vortex phase diagram has also been drawn for the first time for the FeTe0.60Se0.40, which has very high values of critical current density Jc ~ 1.10(5) Amp/cm2 and the upper critical field Hc2(0) = 65T, with a reasonably high transition temperature Tc =14.5K.Comment: 12 pages, 4 figure

    Magnetic frustration in a stoichiometric spin-chain compound, Ca3_3CoIrO6_6

    Get PDF
    The temperature dependent ac and dc magnetization and heat capacity data of Ca3_3CoIrO6_6, a spin-chain compound crystallizing in a K4_4CdCl6_6-derived rhombohedral structure, show the features due to magnetic ordering of a frustrated-type below about 30 K, however without exhibiting the signatures of the so-called "partially disordered antiferromagnetic structure" encountered in the isostructural compounds, Ca3_3Co2_2O6_6 and Ca3_3CoRhO6_6. This class of compounds thus provides a variety for probing the consequences of magnetic frustration due to topological reasons in stoichiometric spin-chain materials, presumably arising from subtle differences in the interchain and intrachain magnetic coupling strengths. This compound presents additional interesting situations in the sense that, ac susceptibility exhibits a large frequency dependence in the vicinity of 30 K uncharacteristic of conventional spin-glasses, with this frustrated magnetic state being robust to the application of external magnetic fields.Comment: Physical Review (Rapid Communications), in pres

    Long range magnetic ordering in a spin-chain compound, Ca3_3CuMnO6_6, with multiple bond distances

    Full text link
    The results of ac and dc magnetization and heat capacity measurements as a function of temperature (T = 1.8 to 300 K) are reported for a quasi-one-dimensional compound, Ca3_3CuMnO6_6, crystallizing in a triclinically distorted K4_4CdCl6_6-type structure. The results reveal that this compound undergoes antiferromagnetic ordering close to 5.5 K. In addition, there is another magnetic transition below 3.6 K. Existence of two long-range magnetic transitions is uncommon among quasi-one-dimensional systems. It is interesting to note that both the magnetic transitions are of long-range type, instead of spin-glass type, in spite of the fact that the Cu-O and Mn-O bond distances are multiplied due to this crystallographic distortion. In view of this, this compound could serve as a nice example for studying "order-in-disorder" phenomena.Comment: Physical Review (in press

    Magnetic anomalies in the spin chain system, Sr3_3Cu1x_{1-x}Znx_xIrO6_6

    Full text link
    We report the results of ac and dc magnetization (M) and heat-capacity (C) measurements on the solid solution, Sr3_3Cu1x_{1-x}Znx_xIrO6_6. While the Zn end member is known to form in a rhombohedral pseudo one-dimensional K4_4CdCl6_6 structure with an antiferromagnetic ordering temperature of (TN_N =) 19 K, the Cu end member has been reported to form in a monoclinically distorted form with a Curie temperature of (TC_C =) 19 K. The magnetism of the Zn compound is found to be robust to synthetic conditions and is broadly consistent with the behavior known in the literature. However, we find a lower magnetic ordering temperature (To_o) for our Cu compound (~ 13 K), thereby suggesting that To_o is sensitive to synthetic conditions. The Cu sample appears to be in a spin-glass-like state at low temperatures, judged by a frequency dependence of ac magnetic susceptibility and a broadening of the C anomaly at the onset of magnetic ordering, in sharp contrast to earlier proposals. Small applications of magnetic field, however, drive this system to ferromagnetism as inferred from the M data. Small substitutions for Cu/Zn (x = 0.75 or 0.25) significantly depress magnetic ordering; in other words, To_o varies non-monotonically with x (To_o ~ 6, 3 and 4 K for x = 0.25, 0.5, and 0.67 respectively). The plot of inverse susceptibility versus temperature is non-linear in the paramagnetic state as if correlations within (or among) the magnetic chains continuously vary with temperature. The results establishComment: 7 pages, 7 figures, Revte

    Magnetic anomalies in single crystalline Tb5Si3

    Full text link
    The polycrystalline form of the compound, Tb5Si3, crystallizing in Mn5Si3-type hexagonal structure, which was earlier believe to order antiferromagnetically below 69 K, has been recently reported by us to exhibit interesting magnetoresistance (MR) anomalies. In order to understand the magnetic anomalies of this compound better, we synthesized single crystals of this compound and subjected them to intense magnetization and MR studies. The results reveal that the magnetic behavior is strongly anisotropic as the easy axis is along a basal plane. There appear to be multiple magnetic features in the close vicinity of 70 K. In addition, there are multiple steps in isothermal magnetization (which could not be resolved in the data for polycrystalline data) for magnetic-field (H) along a basal plane. The sign of MR is positive in the magnetically ordered state, and, interestingly, the magnitude dramatically increases at the initial step for H parallel to basal plane, but decreases at subsequent steps as though the origin of these steps are different. However, for the perpendicular orientation (H || [0 0 0 1]), there is no evidence for any step either in M(H) or in MR(H). These results establish this compound is an interesting magnetic material

    Magnetic ordering in La 0.7 Sr 0.3 Co 1-x Mn x O 3

    No full text
    corecore