15 research outputs found

    Properties of a random attachment growing network

    Full text link
    In this study we introduce and analyze the statistical structural properties of a model of growing networks which may be relevant to social networks. At each step a new node is added which selects 'k' possible partners from the existing network and joins them with probability delta by undirected edges. The 'activity' of the node ends here; it will get new partners only if it is selected by a newcomer. The model produces an infinite-order phase transition when a giant component appears at a specific value of delta, which depends on k. The average component size is discontinuous at the transition. In contrast, the network behaves significantly different for k=1. There is no giant component formed for any delta and thus in this sense there is no phase transition. However, the average component size diverges for delta greater or equal than one half.Comment: LaTeX, 19 pages, 6 figures. Discussion section, comments, a new figure and a new reference are added. Equations simplifie

    Subgraphs in random networks

    Full text link
    Understanding the subgraph distribution in random networks is important for modelling complex systems. In classic Erdos networks, which exhibit a Poissonian degree distribution, the number of appearances of a subgraph G with n nodes and g edges scales with network size as \mean{G} ~ N^{n-g}. However, many natural networks have a non-Poissonian degree distribution. Here we present approximate equations for the average number of subgraphs in an ensemble of random sparse directed networks, characterized by an arbitrary degree sequence. We find new scaling rules for the commonly occurring case of directed scale-free networks, in which the outgoing degree distribution scales as P(k) ~ k^{-\gamma}. Considering the power exponent of the degree distribution, \gamma, as a control parameter, we show that random networks exhibit transitions between three regimes. In each regime the subgraph number of appearances follows a different scaling law, \mean{G} ~ N^{\alpha}, where \alpha=n-g+s-1 for \gamma<2, \alpha=n-g+s+1-\gamma for 2<\gamma<\gamma_c, and \alpha=n-g for \gamma>\gamma_c, s is the maximal outdegree in the subgraph, and \gamma_c=s+1. We find that certain subgraphs appear much more frequently than in Erdos networks. These results are in very good agreement with numerical simulations. This has implications for detecting network motifs, subgraphs that occur in natural networks significantly more than in their randomized counterparts.Comment: 8 pages, 5 figure

    On the topological classification of binary trees using the Horton-Strahler index

    Full text link
    The Horton-Strahler (HS) index r=max(i,j)+δi,jr=\max{(i,j)}+\delta_{i,j} has been shown to be relevant to a number of physical (such at diffusion limited aggregation) geological (river networks), biological (pulmonary arteries, blood vessels, various species of trees) and computational (use of registers) applications. Here we revisit the enumeration problem of the HS index on the rooted, unlabeled, plane binary set of trees, and enumerate the same index on the ambilateral set of rooted, plane binary set of trees of nn leaves. The ambilateral set is a set of trees whose elements cannot be obtained from each other via an arbitrary number of reflections with respect to vertical axes passing through any of the nodes on the tree. For the unlabeled set we give an alternate derivation to the existing exact solution. Extending this technique for the ambilateral set, which is described by an infinite series of non-linear functional equations, we are able to give a double-exponentially converging approximant to the generating functions in a neighborhood of their convergence circle, and derive an explicit asymptotic form for the number of such trees.Comment: 14 pages, 7 embedded postscript figures, some minor changes and typos correcte

    Generating functions for multi-labeled trees

    Get PDF
    Multi-labeled trees are a generalization of phylogenetic trees that are used, for example, in the study of gene versus species evolution and as the basis for phylogenetic network construction. Unlike phylogenetic trees, in a leaf-multi-labeled tree it is possible to label more than one leaf by the same element of the underlying label set. In this paper we derive formulae for generating functions of leaf-multi-labeled trees and use these to derive recursions for counting such trees. In particular,weprove results which generalize previous theorems by Harding on so-called tree-shapes, and by Otter on relating the number of rooted and unrooted phylogenetic trees

    On weighted multiway cuts in trees

    Get PDF
    A min-max theorem is developed for the multiway cut problem of edge-weighted trees. We present a polynomial time algorithm to construct an optimal dual solution, if edge weights come in unary representation. Applications to biology also require some more complex edge weights. We describe a dynamic programming type algorithm for this more general problem from biology and show that our min-max theorem does not apply to it. © 1994 The Mathematical Programming Society, Inc

    A Fourier inversion formula for evolutionary trees

    Get PDF
    Abstract-We establish a pair of identities, which will provide a useful tool in the reconstruction of evolutionary trees in Kimura’s 3-parameter model. The starting point of this paper was an attempt for a better understanding and generalization of an Hadamard inverse pair of formulae, which was used in statistics by Cooper [l], in image processing by Andrews [2, Chapters 6,7], and in information theory by Whelchel and Guinn [3]. Recently, Hendy and Penny [4] applied this technique to the spectral analysis of phylogenetic data, for two-state character sequences, and they asked for generalization to four-state character sequences, which is the form of a nucleotide sequence. The most invaluable tool for our work was [5], where discrete Fourier analysis is applied to somewhat similar problems. Let us start with the original theorem of Hendy and Penny [6]. Suppose we are given a tree T with leaf set L, out of which one is a root called R. Set ILI = n. Toss a coin independently for every edge e of the tree with probability and probability 1- pe for a tail. Let u denote a subset of L \ {R}. Let fc denote pe for a head the probabilit

    Complexity and Exact Algorithms for Multicut

    No full text
    corecore