
Abstract

Mathematical Programming 65 (1994) 93- 105

On weighted multi way cuts in trees

Peter L. Erdos*·\ Llszl6 A. Szekely**·b
•cencrum voor Wiskunde en lnformatica, 1098 SJ Amsterdam, Netherlands

Mathemati ea! Institute of the Hungarian Academy of Sciences. H-1055 Budapest, Hungary
bDepartment of Computer Science, Eotvos University, H-1088 Budapest, Hungary

Department of Mathematics, Universiry of New Mexico. Albuquerque, NM 87131, USA

Received 11 September 1991; revised manuscript received I April 1993

A min-max theorem is developed for the multi way cut problem of edge-weighted trees. We present
a polynomial time algorithm to construct an optimal dual solution, if edge weights come in unary
representation. Applications to bioJQgy also require some more complex edge weights. We describe
a dynamic programming type algorithm for this more general problem from biology and show that
our min- max theorem does not apply to it.

AMS 1991 Subject Classifications: OSCOS, 05C70, 90C27

Keywords: Multiway cut; Menger's theorem; Tree; Duality in linear programming; Dynamic programming

1. Introduction

Let G = (V, E) be a simple graph, C = { l, 2, ... , r} be a set of colours. For N ~ V(G), a
map x:N ~ C is a partial colouration. We usually think of a given partial colouration. A
map x: V(G) ~ C is a colouration if x< v) = x (v) holds for all u EN.

A colour dependent weight function assigns to every edge (p, q) and colours i,j a natural
number w(p, q; i, j), which tells the weight of the edge (p, q) in a colouration x. in which
X(P) = i, x(q) = j. We assume that w(p, q; i, i) = 0 and w(p, q; i,j) = w(q,p;j, i).We say
that w is colour independent, if for any (p, q), i 1 -=I= j 1, i 2 7'= Ji, we have w(p, q; i 1, j 1) = w(p,
q; i 2,h)- We say that w is edge independent, if for any (p1, q 1) EE and (p2, q2) EE, and

*Corresponding author.
**Research of the author was supported by the A. v. Humboldt-Sciftung and che U.S. Office of Naval Research
under che contract N-0014-91-J-1385.

0025-5610 © 1994-The Mathematical Programming Society, Inc. All rights reserved
SSDI 0025-5610(93) E0073-N

94 P.L Erdos, LA. Szekely/ Mathematical Programming 65 (1994) 93-105

i,jEC, we have w(p 1, q1; i,j) = w(p2, q2; i,j). (Hence, any edge independent weight

function satisfies w(p, q; i,j) = w(p, q; j, i) .) We say that w is constant, if it is colour and

edge independent.
An edge (p, q) is colour-changing in the colouration x. if X(P) * x(q). The changing

number of the colouration x is the sum of weights of the colour-changing edges in x, i.e.:

change(G, X) = w(p, q; j((p), x(q)) .
(p. q) EE(G)

A partial colouration x defines a partition of N by N; = { u EN: X(u) = i} . A set of edges that

separates every N1 from all the other N/s is termed a multiway cut [l]. Observe that the set

of colour-changing edges of a colouration x forms a multi way cut and every multiway cut

is represented in this way.

The length of the pair (G, x) is the minimum weight of a multi way cut, in formula:

L(G, x) =min{change(G,)(): X colouration}.

An optimal colouration is a colouration x such that change(G, x) = l(G, x).

The multi way cut problem for colour independent weight functions has been extensively

studied in combinatorial optimization (e.g. [1-3].). As Dahlhaus et al. pointed out [3],

this problem is NP-hard, even for I NI = 3, I Nd = l and constant weight.

On the other hand, if we restrict ourselves to planar graphs, a fixed number of colours,

and constant weight, then the problem becomes solvable in polynomial t ime [3]. A well

known specialization of the multi way cut problem, which is solvable in polynomial time,

is r = 2, which is considered in the undirected edge version of Menger' s theorem [8].

Although it is less known in the operations research community, some instances of the

multiway cut problem have great importance in biomathematics. In fact, the notions of the

changing number and the length came from genetics and we follow the terminology used

there. For the case of constant weight function, Fitch [6] and Hartigan [7] developed a

polynomial time algorithm to determine the length of a given tree. Sankoff and Cedergren

[13], and Williamson and Fitch [12] studied edge independent weight functions and made

polynomial time algorithms to find the length. Some explanation of the significance of the

multi way cut problem in biology is given in [4, 5].

The goal of the present paper is to study the multi way cut problem. In Section 2 we give

a new lower bound for the length of a multi way cut. Section 3 provides a dynamic program

ming type algorithm to find the length of a tree with an arbitrary weight function. Section

4 uses the algorithm of Section 3 to establish a min-max theorem for the multiway cut

problem of trees, in the case of colour independent weight functions. All the results can be

extended to any graph G, in which N intersects every cycle. Section 5 describes our results

in terms of linear programming.

A preliminary version of the present paper has already appeared (5]. We are indebted to

the anonymous referees for their helpful observations that we use in this presentation.

P.L Erdos. L.A. Szekely I Mathematical Programming 65 (1994) 93-105 95

2. Lower bound for the weight of a multiway cut

Let G be a simple graph, N ~ V(G) and x : N--+ C be a partial colouration. Let w be a
colour dependent weight function.

Definition. An oriented path Pin G starting at s(P) EN and terminating at t(P) EN is a

colour-changing path, if x(s(P)) =fa x(t(P)) and P has no internal vertex in N. (From now

on path means oriented path, unless we explicitly say the opposite.) Let us fix a family 9J
of colour-changing paths and let e= (p, q) EE(G).Define

n;(e, .9) = #{PE.9: (p, q) EP and x(t(P)) = i} .

The notation (p, q) E P means that P enters the edge (p, q) at p and leaves at q.

Definition. Let x:N--+ C be a partial colouration and :X be a colouration on G. A family .9
of colour-changing paths is a path packing, if all pairs of colours i =F j and all edges (p, q)
satisfy

n;((p, q), .9) + nj((q, p), .9) ~w(p, q;j, i) .

The maximum cardinality of a path packing is denoted by p(G, x).

Theorem 1. For any graph G and partial colouration x. we have

l(G,x)~p(G,x).

Proof. Let .9 be a path packing and x: V(G) --+ C be an optimal colouration. Define a map

f:.9'--+ E(G) as follows: let/(P) = e if e is the last colour-changing edge in Pin x. For any
colour changing edge e = (p, q), X.(p) = j and x (q) = i (i =f:. j since e is colour changing),

we have

#{PEfJJ: f(P) =e} ~n;((p, q), fJJ) +n/ (q, p), fJJ) ~ w(p, q;j, i) .

Therefore,

19'1 ~change(G,)()=l(G, X). 0

3. An algorithm to find optimal colourations

Now we focus on the multi way cut problem of trees. Let T be a tree and x: N--+ C be a
partial colouration, and let L (T) denote the set of leaves, i.e. vertices of degree I. We

assume N = L(T). (It is obvious that the solution of the multi way cut problem of trees with
N = L(T) easily generalizes to the solution of the multi way cut problem of trees with
arbitrary N.) Let w be a colour dependent weight function. In this section we give a

polynomial time algorithm to determine all optimal colouration of T for the weight w.

96 P.L Erdos. L.A. Szekely/ Mathematical Programming 65 (1994) 93- 105

Let us fix an arbitrary non-leaf vertex, the root of T. Let (u, v) be an edge and let v be

closer to the root than u, then we say v = Father(u). (Father(root) is NIL.) We denote

the set of all u for which v = Father(u) by Son(v).
Our colouring algorithm has two phases. Starting from the leaves and approaching the

root we determine a penalty fwzction of every vertex v recursively, and s ubsequently we

determine a suitable colouration x starting from the root and spreading to the leaves.

Definition. The vector-valued penalty function is a map

pen: V(T)--+ (~U {cc})',

such that pen;(v) means the length of the subtree separated by v from the root, if the colour

of v has to be i.

Phase I. For every leaf v EL(T) let

() {
0 if v EN; ,

pen. v =
' oo otherwise ,

where in an actual computation co may be substituted by a sufficiently large number. Take

a vertex v, such that pen(v) is not computed yet for the vertex v, but pen(u) is already

known for every vertex u E Son(v). Then compute

pen;(v) = L min {w(u, v; j , i) + peni(u)}.
ue Son(u) i= I. r

Phase II. Now we determine an optimal colouration x of T. First, let)((root) be a colour

i, which minimizes the value pen;(root). Furthermore, for a vertex v for which)((v) is not

settled yet, but :X (Father(v)) is already determined, let x (v) be a colour i, which minimizes

the expression

w(v, Father(u); i, x(Father(u))) + pen; (v).

It is easy to see, that every leaf u EN; satisfies)((v) = i = X(u), for i = 1, ... , r.

The correctness of this algorithm is almost self-explanatory. Assume the positive integer

edge weights are given in unary representation. Then, the time complexity is 0(n · r2
·

(max weight)), since at each step we calculate r 2 sums, take the minimum, and roughly 2n

steps are necessary because T has n vertices and n - 1 edges. You may change max weight

for log(max weight), if the edge weights come in binary representation.

In the rest of this section we focus on colour independent weight functions, since we can

develop a slightly more efficient version of this algorithm, which also can determine all

optimal colourations. Biologists may need all optimal colourations; the saving in running

time comes from avoiding the second minimization in Phase II. Also, case (A2) in the

proof of Theorem 2 will need the modified algorithm. For the sake of simplicity, for the

rest of this section the weight function is a map w:E(T)--+N for colour changing edges

P. L. Erdos, l.A. Szekely I Mathematical Programming 65 (1994) 93-105 97

and the weight of any edge not changing colour is 0. We use the usual Kronecker delta
notation.

Phase I'. For every leaf v, set

M1(v) =M2 (v) = {i: pen;(v) =0}.

If pen(v) is not computed yet for the vertex v but pen(u) is already known for every vertex

u E Son(v), then set

peni(v) = .L, mm { (1- 8ij)w(u, v) +peniu)} .
11 e Son(u) j ~ l , i .. r

Let p (v) = min;pen;(v), and

M 1(v) = {iE { 1, .. ., r}: pen;(v) =p(v)} ,

M2 (v) = {iE { l, .. ., r}: pen;(v) <p(v) +w(v, Father(v))}.

It is obvious that M 1 (v) ~M2(u).

Phase II'. For x(root), take an arbitrary element of M1 (root). If xC v) is not settled yet for
a vertex V, but x< Father(v)) is already determined, take

-(v) ={x(Father(v)) if X(Father(v)) EM2 (v),
X an arbitrary element of M1 (v) otherwise.

It is easy to see, that every vertex v EN; satisfies x (v) = i = x(u), for i = 1, .. ., r. This
algorithm is obviously correct and permitting some extra freedom at certain steps, any

optimal colouration can be obtained by the modified algorithm. For this purpose we intro
duce a third set of colours at Phase I':

M 3 (v) = {iE { 1, ... , r}: peni(u) =p(u) +w(u, Father(u))}.

If in Phase II' we also allow to give the colour of :X (Father(u)) to u, if
x(Father(u)) EM3(u), then the algorithm still yields an optimal colouration. Moreover,
one can prove that running this algorithm in all possible ways yields all optimal colourations.

(We leave the proof to the reader.) The complexity of this revised algorithm is better by a

constant multiplicative factor than that of the original, but to get every optimal colouration
may take exponential time, since M.A. Steel exhibited trees with exponentially many optimal

colourations [11] .

4. A min-max theorem

In this section we assume that the weight function is colour-independent and we prove
that the lower bound of Theorem 1 is tight for leaf-coloured trees, and then even for a larger

class of graphs.

98 P.L. Erdos. LA. Szekely I Mathematical Programming 65 (1994) 93-105

Theorem 2. Let T be an arbitrary tree with colour-independent weight function
w: E(T) ~ N and with leaf-colouration x:L(T) ~C. Then

l(T, x) =p(T, X).

We already know from Theorem 1 that the LHS is greater or equal than the RHS. We have

to prove the other inequality. For this end we construct the de.sired optimal path packing in

a recursive manner. At first, we explicitly construct optimal path packi!lgs for stars, i.e. for
trees with 1 branching vertex. Then, for a tree Twith at least 2 branching vertices and with

W(T) = L w(f)
/E E.(T)

sum of weights, we define a 'smaller' tree T' for which we can trace back the problem of

the construction of an optimal path packing, such that we can 'lift up' the path packing from

T' to T Lo get the solution. We may have at most W(T) 'lift up' steps. Here we give the
details.

For convenience, we want to use the functions Son and Father, therefore we fix, as in

Section 3, a root of T. In the complexity issues we assume that our tree is represented by
the vertices v and the sets Son(v) and Father(v), furthermore every element of Son(v) and

Father(v) (which represents edges) also contains the weight of the edge. The paths under

construction will be represented as double-linked lists, therefore, due to Theorem I, the

space complexity of the representation is 0 (l (T, x) · n).

Definition. We say that a vertex u is of order I if every element of Son(v) is a leaf.

Notice that every tree with at least 2 branching vertices has a non-root vertex of order 1.
Before starting the main body of the proof we need the following lemma.

Lemma 1. One can assume that no vertex of order 1 has two sons with the same colour.

Let v be a vertex of order 1, such that Son(v) contains at least 2 leaves with identical colour.

Let I:(T) denote the tree obtained from Tby identification of the elements of Son(u) with

identical colour and adding up their edge weights, respectively. Now one can easily construct

an optimal path packing for T from an optimal path packing of L,(T). Anyhow, we give a
formal proof, otherwise, the bas:e case of our recursive algorithm would not be complete.

Proof. Define the tree "L(T) formally as follows: let the tree T' be a star with midpoint v

and with leaves {/;: 3u E Son(v) with x(u) = i} and let L (T) be the tree made of the trees

T \Son(u) and T' by identification of their common v. The leaf-colouration and weight

function of [(n are as follows:

x'(u) ={Xi· (u) if uEL\Son(v),
if u=l;,

PL Erdfis. L.A. Szekely/ Mathematical Programming 65 (1994) 93-105 99

w'(j) = {u•J~~(u) w((u, u))
X(11)=i

w(f)

if f= (l;, v),

otherwise.

Notice that Z([(T), x') = l(T, x) .

Claim. If l(L.(T), x') = p(L.(T), x') then l(T, X) = p(T, X) .

Proof. Let Son(v) contain d different colours. We apply induction on I Son(v) j.
Base case: if I Son(v) I = d, then L. (T) = T, x = x', and we have nothing to prove.
Inductive step: Suppose that we know Lemma I for all I Son(u) I < k. Assume now

I Son(v) I = k and for some fixed Zt , Z2 E Son(v) ' let x(z,) = x(z2). Join Z1 and Z2 into z. In
the new tree T * obtained by identification, define the leaf colouration and the weight
function as follows:

x*(u) ={x<u)
x(z,)

if U =i' Z1, Z2,

if u=z,

w*(j) ={w(f)
w(u, z1) +w(u, Z2)

if j=i' (v, Z;),

ifj= (u, z).

Now we have l:(T) = l:(T *), therefore /(E(T)) = l(L,(T *)). By the hypothesis there
exists a path packing .9* in the tree T * satisfying I .9* I = l (T *). It is easy to divide the
paths of .9* adjacent to vertex z into two groups, such that the members of one group are
adjacent to z1 and the members of the other are adjacent to z2 and both groups obey the

weight restriction on the edge adjacent to Z;· In this way we obtain a path packing of l(T)

members in T. TI1is proves the Claim as well as Lemma l. D

The time complexity of this algorithm is 0(L:11 eson<v> w(u, v)) so the time complexi~y
of all applications of Lemma 1 altogether is 0(W(T)).

We return to the main body of the proof; we assume that any two sons of an arbitrary
vertex of order I have different colours. Our algorithm is given in a recursive form in the

variables b(T) and W(T), where b(T) is the number of branching (non-leaf) vertices of
T.

Base case: le t b(T) =I and W(T) be arbitrary. Then Tisa star; let v denote the midpoint

of it. Due to Lemma I we may assume that ! L(T) I = r (i.e. every colour occurs once).
Assume that the edge (v, u) has maximum weight over all edges. Orient paths from u to

every other leaf z EL(T) \ { u} with multiplicity w(v, z). This path system is obviously a
path packing and has l (T) members. This case requires 0(W(D) steps.

Recursive step: For any tree T with at least 2 branching vertices we shall find 'smaller '
tree T' with fewer branching vertices (b(T') <b(T)) or with smaller total weights

100 P.L. Erdos. L.A. Szekely I Mathematical Programming 65 (1994) 93-105

(b(T') = b(T) and W(T') < W(T)) such that an optimal path packing of T' can be lifted

up to an optimal path packing of T. Define

s(v) = max w(v, u).
11ESon(1.•)

We distinguish two cases:
(A) There is a vertex u of order 1 such that s(v) :fo w(v, Father(v)).
(B) s(u) = w (u, Father(v)) for every vertex v of order I.
Case (A). Let x be an optimal colouration of T such that v is the first branching vertex

for which the colour sets M; were determined. We have two subcases; in (A I) we have
s(v) >w(v, Father(v)), in (A2) we have s(v) <w(v, Father(v)).

Case (A 1). Let T" be the tree with the same vertex set, edge set and leaf colouration as
the tree T was, and let the new weight function w': E(T) ~ ~ such that

w'(j) ={w(f)-1 iff=(v, u) where uESon(v),
w(j) if otherwise .

If w' (/) = 0, then cancel this edge and its leaf endpoint from the tree T" to obtain the tree
T'. Due to our colouring algorithm, colouration x is also optimal for the tree T', therefore

l(T') + (I Son(v) 1-1) = l(T) .

The total weight of tree T' is less than of T. Assume now that we have an optimal path
packing 9' of l(T', X) elements in T'. Denote by liT the star of vU Son(v) with weight

function w= 1 and with the original leaf colouration. Let fig> be optimal path packing in
6.T (use the base case). Now the path system 9 = 9' U /!,.9 is obviously optimal path

packing in the tree T.
We can construct T' and the path packings li.9' and .9' from the given tree T and path

packing 9' in O(r· Lue Son<") w(u, u)) time. so that the total time complexity of the case

(Al) is ouwcn).
Case (A2). Now we haves(v) < w(u, Father(v)). Let the tree T' be identical with the

tree T with the same leaf-colouration and with the weight function

w'(j) ={s(v)
w(j)

if f = (v, Father(v)) ,
otherwise.

Now it is easy to see that there exists an optimal colouration x of T' satisfying x (v) =

)((Father(v)) which is also optimal in T. (The only problem that can occur is that
x(Father(v)) EM2 (v) but X(Father(v)) E M3 (v). In that case we can apply the extended
Phase II'.) Therefore, we have l(T) = l(T') and W(T') < W(T). Now we can easily 'lift

up' any optimal path packing 9 of T' to the tree T, namely .9 itself is obviously path
packing in T.

This operation takes 0(I) time, so the total time complexity of case (A2) is O(n).

Case (B). From now on we assume that every vertex z of order I satisfies the condition
s(z) = w(z, Father(z)). For the rest of (B), we fix a vertex v; if the diameter of T is 3, then

P.l. Erdos. l.A. Szekely I Mathematical Programming 65 (1994) 93-105 IOI

let v be the root, otherwise, let v be a non-root vertex such that Son(v) <i. L(T) and every
non-leaf son is a vertex of order 1 (the existence of such a u is obvious). Let the non-leaf

sons of v be the vertices z1, • •• , Zk·

By the definition of case (B) it is easy to see the existence of an optimal coloration 5(
colouring v and every z,. to the same colour. Therefore if t is the tree derived from the tree

Tby contracting every edge of form (v , Z;) (leaving the name of the new vertex v), which
is endowed with the original leaf-colouration and weight function on the existing edges,

then the restriction of the same colouration X: is also optimal for T and l (f) = l (n . On the

other hand, the tree T has less branching vertices than T.
Now due to our hypothesis we have an optimal path packing .9 in the tree f. Therefore

1.9' 1 =l(T) .

Let us define the lift up .9'= {P: PE.9} of the path packing .9, where P is identical with

P if no leaf u of Son(z,.) (i = I, ... , k) belongs to the path P, and P comes from P by
subdivision of the edge (v, u) with vertex Z; if end vertex (P) = u E Son(z;) (i = 1, ... , k).

We have l(T) many elements in .9'.
Let e,.= (v, Z;) (for every i = 1, ... , k). For an edge/= (p, q), we write -/= (q, p).

Now, by the definition of ffe, the condition

n/J, .9') + n/ - f, .9') ~ w(j)

holds for every edgef=Fe,. (i= 1, ... , k), but unfortunately this is not necessarily the case
for the edges e,..

We solve this problem in a slightly more general setting (Lemma2) . For this we introduce

the following notations: Let [x] + denote x, if x is non-negative, 0, if x is non-positive.
Define the badness of the colour changing path system /?/J by

bad(.9') = L [n,.(e, .9') +nj(-e, .9)-w(e)] + .

(i,j) ECXC e EE(G)

i-F j

Call an edge oversaturated by the path system !Jl>, if the contribution of the edge to the

badness is positive. (We recall the definition e; = (u, z,-).)

Lemma 2. Let .9 be a system of colour-changing paths on the tree T such that

(i) for all i,j. nj(± e;, .9') ~ w(e;),
(ii) !Jl> does not oversaturate any edge from E(T) \ { e,, . . . , ek}.

Then there exists a path packing !Jl> * in T of the same size.

Proof. If bad(.9') = 0 then .9' itself is a path packing. Suppose bad (.9') > 0, and, say, the
edge e1 is oversaturated with colours 1 and 2, i.e.

102 P.L Erdos, LA. Szekely/ Mathematical Programming 65 (1994) 93-105

n1(e" .9) +n2(-e 1 , .9) >w(e1).

Take a path P 1 E 9' such that e1 EP1 and x(t(P1)) = I (where, say, t(P1) ESon(z1)), and

a path P2 E.9 such that -e, EP2 and x(t(P2)) =2 (where t(P2) ~Son(z1) and

s(P2) ESon(zi)). Now we distinguish the cases (BA) and (BB):

Case (BA). Suppose there is no P3 E.9 for which -e1 EP3, s(P3) =s(P2) and

x(t(P3)) = 1. In this case we define the following path system:

.91 =.9'U{P}\{Pi},

where the path P is (s(P2), z1, t(P1)), oriented from left to right.

Claim A.

Proof. lt is easy to see that n;(±f, 9'1) <n,.(±f, 9') for each i= 1, .. ., k and for each

fEE(T)\{e 1, (z1,s(P2))}, furthermore

n,.(e1 , 9' i) = n,.(e,., f!.b), i = 2, .. ., k,

n 1 (e" .9'1) = n1 (e1 , .9') - 1 .

Finally, for the edge/2 = (z 1, s(P2)) we have

n,.(f2 , .91) = n;{f2 , 9'), i= 1, .. ., k,

n,.(-f2, 9'1) = n,.(-/2 , .9'), i=2, .. ., k,

n 1(-f2 , .9'1) +n,.(f2 , .9'1) ~w(f2), i= 1, .. ., k.

The last inequality is true, since otherwise n 2 (- f 2, .9) + n,.(f2 ~) > w(f2) would hold,

contradicting the assumptions of Lemma 2. 0

Case (BB). Suppose there exists a path P3 which was forbidden in (BA). Then let .91

be the following path system:

where P3 /\P1 denotes the (unique) path oriented from s(P3) to t(P1).

Claim B.

bad(9'1) ~ bad(.9') - I .

Proof. Set

P.L. Erdos, L.A. Szekely I Mathematical Programming 65 (1994) 93-105 103

Then for each edge f EE(T) \ (E1 U E2) the estimates of Claim A hold. Furthennore, for

/EE1 we have

n;(±f, !IP,) = n;(±/, .9'), i=2, . .. , k,

n1 (±/, .9'1) ~ n 1 (±/, .9') ,

n;(± (z1 , t(P1)), .9'1) =n;(± (z1 , t(P1)), !flJ) , i= l, ... , k,

n;(±e1 , !IP1) = n;(±e1 , !flJ), i =2, ... , k,

n1(±e1 , .9'1) =n1 (±e1 , .9)-1,

n;(±(z,,s(P 3))=n;(±(z1,s(P3)), .9') i=l, ... ,k.

The equalities and inequalities above prove Claim B. 0

The surgeries described in Case (BA) and Case (BB) obviously keep the conditions of

Lemma 2, therefore they may be repeated until the badness drops to 0. Claims A and B

guarantee, that we finally reach 0. Lemma 2 and Theorem 2 are proved. D

The determination of the tree t takes O(n) steps, therefore the total time complexity of

this procedure is O(nb(T)). To lift up the paths from 9 to .9 takes

o(r L w(v, z))
zeSon (I•)

time, therefore the total time complexity of lift up operations is O(rW(T)) . Finally, the

badness at Lemma 2 is at most

L w(v, z)
zeSon (co)

and every edge can occur at most one application of Lemma 2 so the total time complexity

of Lemma 2 is O(max{rW(D. n 2
}).

The bookkeeping of (edge, path) incidences is necessary. A possible execution of this

task is to build up lists for every edge to store these incidences and to maintain these lists

at every 'lift up' step. The total time complexity of our recursive procedure is

O(max{rW(D. n 2 }), so it is unary polynomial.

The following theorem is an easy consequence of TI1eorem 2.

Theorem 3. Let G be a graph with a weight function w: E(T) ~ N and with a partial

colouration x: N-+ C. Assume that N intersects every cycle of G. Then

104 P.L Erdos, L.A. Szekely I Mathematical Programming 65 (1994) 93-105

l(G, x) =p(G, x)

Proof. Obtain a forest by eliminating the vertices of N and making leaves from the edges
that were adjacent to them. Give the colour of n to the leaves that substitute a former n EN.
Apply Theorem 2 for each and every tree in the forest. 0

5. The LP connection

One may consider the following linear programs related to the multiway cut problem

with colour independent weight function. Note that this is something, which is different

from the usual multi way cut polyhedron [1].
For every oriented edge (p, q) of G and every ordered pair of distinct colours ij define a

variable Zpq.iJ· If q EN, then eliminate Zpq,iJ and ZqpJi for every j'.:P. x(q). Introduce new
quotient variables by identifying the surviving variables Zpq,iJ and ZqpJi in pairs. For conven
ience we use the same notation for the quotient variables. Then the primal linear program

IS:

Zpq.iJ ~ 0 ;

for every colour-changing path P0 b (a, b EN), have

L L Zpq.iX(b) ~ I;
(/'· q)EPab i : i<1ox(b)

min L. Zpq.iJ w(p, q) ,

where the last sum is for all quotient variables. To describe the dual linear program, for

every colour-changing path P00 introduce a variable Aab> such that

for every quotient variable Zpq.ij, have

x=i
(p. q) EPab

max L A ab .

x(!J) =i
(q, p) EPuu

Auu ~ w(p, q);

We claim that these linear programs have integer optimal solutions. It is easy to see, that

p(G, x) ~ max L Aab: A ab integer~ max L Aab = min L Zpq.ij w(p, q)

~min [. Zpq.iJ w(p, q) :zpq,iJ integer~l(G, x).

Only the first and last inequalities require proofs from the chain of inequalities above. The
first one holds, since any path packing provides a feasible integer solution for the second
linear program. The last one holds, since we have an optimal colouration x with total weight

P.L. Erdos, L.A. Szekely I Mathematical Programming 65 (1994) 93-105 105

of the colour-changing edges of l(G, x); define Zpq.ij = l, iff (p, q) is a colour-changing

edge in the optimal colouration x and X(P) = i, x< q) = j hold, and Zpq,ij = 0 otherwise. If
l(G, x) = p(G, x) . then equality holds everywhere in the chain.

It is a natural question whether these linear programs are totally dual integral [1 O], i.e.,

whether they have integer optimal solutions for colour dependent weight functions w(p, q;

i, j) . Unfortunately, this is not the case, take for example the 3-star with center c and leaves
x, y, z with colours x(x) = 1, x(y) =2 and x(z) =3; and the weight function w(c, .; i,

j) =; lil'} defined by the matrix

References

l

0

3

l l J S. Chopra and M.R. Rao, ''On the multi way cut polyhedron,'' Networks 21 (1991) 51-89.
[2] W.H. Cunningham, "The optimal multiterminal cut problem," DI MACS Series in Discrete Math. 5 (1991)

105-120.
L3J E. Dahlhaus, D.S. Johnson, C.H. Papadimitriou, P. Seymour and M. Yannakakis, "The complexity of

multi way cuts," extended abstract (1983).
[4 l P.L. Erdos and L.A. Sz~kely, • 'E vo!utionary trees: an integer multicommodity max-flow-min-<:ut theorem,''

Advances in Applied Mathematics 13 (1992) 375-389.
l5 I P.L. Erdos and L.A. Szekely, "Algorithms and min- max theorems for certain multiway cut," in: E. Balas,

G. Cornuejols and R. Kannan, eds., Integer Programming and Combinatorial Optimization, Proceedings of
the Conference held at Carnegie Mellon University, May 25-27, 1992, by the Mathematical Programming
Society (CMU Press, Pittsburgh, 1992) 334-345.

[6] W.M. Fitch, "Towards defining the course of evolution. Minimum change for specific tree topology,"
Systematic Zoology 20 (1971) 406-416.

[7) J.A. Hartigan, "Minimum mutation fits to a given tree," Biomeirics29 (1973) 53-65.
L8 l L. Lovasz and M.D. Plummer, Matching Theory (North-Holland, Amsterdam, 1986).
(91 K. Menger, "Zur allgemeinen Kurventheorie,'' Fundamenta Mathematicae JO (1926) 96-115.

[101 G.L. Nemhauser and LA. Wolsey, Integer and Combinatorial Optimization (John Wiley & Sons, New
York, 1988).

[II] M. Steel, "Decompositions of leaf-coloured binary trees," Advances in Applied Mathematics 14 (1993)
1-24.

[12] P.L. Williams and W.M. Fitch, "Finding the minimal change in a given tree," in: A. Dress and A. v.
Haeseler, eds., Trees and Hierarchical Structures, Lecture Notes in Biomathematics 84 (1989) 75-91.

[13) D. Sankoff and R.J. Cedergren, ''Simultaneous comparison of three or more sequences related by a tree,''
in: D. Sankoff and J.B. Kruskal, eds., Time Wraps. String Edits and Macromoleculas: The Theory and
Practice of Sequence Comparison (Addison-Wesley, London, 1983) 253-263.

