13 research outputs found

    Interpreting Mosaics of Ocean Biogeochemistry

    Get PDF
    Advances in technology and modeling capabilities are driving a surge in progress in our understanding of how ocean ecosystems mix and mingle on medium to small scales

    Plankton lattices and the role of chaos in plankton patchiness

    Get PDF
    Spatiotemporal and interspecies irregularities in planktonic populations have been widely observed. Much research into the drivers of such plankton patches has been initiated over the past few decades but only recently have the dynamics of the interacting patches themselves been considered. We take a coupled lattice approach to model continuous-in-time plankton patch dynamics, as opposed to the more common continuum type reaction-diffusion-advection model, because it potentially offers a broader scope of application and numerical study with relative ease. We show that nonsynchronous plankton patch dynamics (the discrete analog of spatiotemporal irregularity) arise quite naturally for patches whose underlying dynamics are chaotic. However, we also observe that for parameters in a neighborhood of the chaotic regime, smooth generalized synchronization of nonidentical patches is more readily supported which reduces the incidence of distinct patchiness. We demonstrate that simply associating the coupling strength with measurements of (effective) turbulent diffusivity results in a realistic critical length of the order of 100 km, above which one would expect to observe unsynchronized behavior. It is likely that this estimate of critical length may be reduced by a more exact interpretation of coupling in turbulent flows

    Environmental factors influencing larval sprat Sprattus sprattus feeding during spawning time in the Baltic Sea

    Get PDF
    The management of Baltic sprat is challenged by highly variable recruitment success and hence large stock fluctuations. Recent studies have identified the larval and early juvenile life stages to be critical for the survival rate of a sprat year class. Although prey abundance was found to be linked to larval survival success, an analysis identifying the functional relationship and relative importance of other environmental factors is still missing. Sprat larval feeding was investigated in 2002 during three cruises, covering the main spawning time in the Bornholm Basin, Baltic Sea. The aim of the study was to identify the key environmental factors determining the feeding success of larval sprat taking their potential interactions explicitly into account. An extension of generalized additive models (GAMs) was adopted that allows the inclusion of interaction terms in a non-parametric regression model. The final model of sprat larval feeding success explained ∼80% of the variance in the data and was based on the following environmental factors: bottom depth, cubed wind speed as proxy for small-scale turbulence rates, degree of cloudiness as proxy for light conditions and prey density in combination with a feeding period–cloudiness interaction term. Our study demonstrates that the feeding success of sprat larvae in the Baltic Sea is controlled by a number of simultaneously acting key environmental factor

    Modeling the effects of coastal wind- and wind–stress curl-driven upwellings on plankton dynamics in the Southern California current system

    No full text
    We use a Nitrogen-Phytoplankton-Zooplankton-Detritus (NPZD) biogeochemical model implemented in a time-dependent box model scheme to simulate the temporal dynamics of the pelagic ecosystem in the Southern California Current System (SCCS). The model was forced by winds, sea surface temperature and light. Nutrient inputs to the modeled box were driven by coastal upwelling or upwelling due to wind-stress curl in order to assess the importance of each process in the temporal dynamics of the SCCS ecosystem. Model results were compared to the CalCOFI dataset, both in terms of climatological annual cycles and actual values. This comparison led to modifications of the basic model structure to better represent the coastal ecosystem, particularly phytoplankton growth and zooplankton mortality terms. Wind-stress curl-induced upwelling was found to be significant only in the offshore regions while coastal upwelling better represented the dynamics of the inshore areas. The two upwelling mechanisms work in synchrony, however, to bring nutrients to surface waters during the same time periods. Finally, the effect of low-frequency perturbations, such as those associated with the ENSO and NPGO, were assessed by comparing model results and data. Since the NPGO cycle largely impacts the SCCS through modifications of upwelling-favorable winds, its effects were well represented in the model results. In contrast, ENSO responses were poorly captured in the simulations because such perturbations alter the system by changing surface water mass distributions via mechanisms that were not included in the model forcing. © 2011 Elsevier B.V
    corecore