61 research outputs found

    Taming the terminological tempest in invasion science

    Get PDF
    Standardised terminology in science is important for clarity of interpretation and communication. In invasion science – a dynamic and rapidly evolving discipline – the proliferation of technical terminology has lacked a standardised framework for its development. The result is a convoluted and inconsistent usage of terminology, with various discrepancies in descriptions of damage and interventions. A standardised framework is therefore needed for a clear, universally applicable, and consistent terminology to promote more effective communication across researchers, stakeholders, and policymakers. Inconsistencies in terminology stem from the exponential increase in scientific publications on the patterns and processes of biological invasions authored by experts from various disciplines and countries since the 1990s, as well as publications by legislators and policymakers focusing on practical applications, regulations, and management of resources. Aligning and standardising terminology across stakeholders remains a challenge in invasion science. Here, we review and evaluate the multiple terms used in invasion science (e.g. ‘non-native’, ‘alien’, ‘invasive’ or ‘invader’, ‘exotic’, ‘non-indigenous’, ‘naturalised’, ‘pest’) to propose a more simplified and standardised terminology. The streamlined framework we propose and translate into 28 other languages is based on the terms (i) ‘non-native’, denoting species transported beyond their natural biogeographic range, (ii) ‘established non-native’, i.e. those non-native species that have established self-sustaining populations in their new location(s) in the wild, and (iii) ‘invasive non-native’ – populations of established non-native species that have recently spread or are spreading rapidly in their invaded range actively or passively with or without human mediation. We also highlight the importance of conceptualising ‘spread’ for classifying invasiveness and ‘impact’ for management. Finally, we propose a protocol for classifying populations based on (i) dispersal mechanism, (ii) species origin, (iii) population status, and (iv) impact. Collectively and without introducing new terminology, the framework that we present aims to facilitate effective communication and collaboration in invasion science and management of non-native species

    GW190814: gravitational waves from the coalescence of a 23 solar mass black hole with a 2.6 solar mass compact object

    Get PDF
    We report the observation of a compact binary coalescence involving a 22.2–24.3 Me black hole and a compact object with a mass of 2.50–2.67 Me (all measurements quoted at the 90% credible level). The gravitational-wave signal, GW190814, was observed during LIGO’s and Virgo’s third observing run on 2019 August 14 at 21:10:39 UTC and has a signal-to-noise ratio of 25 in the three-detector network. The source was localized to 18.5 deg2 at a distance of - + 241 45 41 Mpc; no electromagnetic counterpart has been confirmed to date. The source has the most unequal mass ratio yet measured with gravitational waves, - + 0.112 0.009 0.008, and its secondary component is either the lightest black hole or the heaviest neutron star ever discovered in a double compact-object system. The dimensionless spin of the primary black hole is tightly constrained to ïżœ0.07. Tests of general relativity reveal no measurable deviations from the theory, and its prediction of higher-multipole emission is confirmed at high confidence. We estimate a merger rate density of 1–23 Gpc−3 yr−1 for the new class of binary coalescence sources that GW190814 represents. Astrophysical models predict that binaries with mass ratios similar to this event can form through several channels, but are unlikely to have formed in globular clusters. However, the combination of mass ratio, component masses, and the inferred merger rate for this event challenges all current models of the formation and mass distribution of compact-object binaries

    Elliptic flow of charged particles at midrapidity relative to the spectator plane in Pb–Pb and Xe–Xe collisions

    Get PDF
    Measurements of the elliptic flow coefficient relative to the collision plane defined by the spectator neutrons v2{ SP} in collisions of Pb ions at center-of-mass energy per nucleon–nucleon pair √ 2.76 TeV and Xe ions at √ sNN = sNN =5.44 TeV are reported. The results are presented for charged particles produced at midrapidity as a function of centrality and transverse momentum for the 5–70% and 0.2–6 GeV/c ranges, respectively. The ratio between v2{ SP} and the elliptic flow coefficient relative to the participant plane v2{4}, estimated using four-particle correlations, deviates by up to 20% from unity depending on centrality. This observation differs strongly from the magnitude of the corresponding eccentricity ratios predicted by the TRENTo and the elliptic power models of initial state fluctuations that are tuned to describe the participant plane anisotropies. The differences can be interpreted as a decorrelation of the neutron spectator plane and the reaction plane because of fragmentation of the remnants from the colliding nuclei, which points to an incompleteness of current models describing the initial state fluctuations. A significant transverse momentum dependence of the ratio v2{ SP}/v2{4} is observed in all but the most central collisions, which may help to understand whether momentum anisotropies at low and intermediate transverse momentum have a common origin in initial state f luctuations. The ratios of v2{ SP} and v2{4} to the corresponding initial state eccentricities for Xe–Xe and Pb–Pb collisions at similar initial entropy density show a difference of (7.0 ±0.9)%with an additional variation of +1.8% when including RHIC data in the TRENTo parameter extraction. These observations provide new experimental constraints for viscous effects in the hydrodynamic modeling of the expanding quark–gluon plasma produced in heavy-ion collisions at the LHC

    The ATLAS trigger system for LHC Run 3 and trigger performance in 2022

    Get PDF
    The ATLAS trigger system is a crucial component of the ATLAS experiment at the LHC. It is responsible for selecting events in line with the ATLAS physics programme. This paper presents an overview of the changes to the trigger and data acquisition system during the second long shutdown of the LHC, and shows the performance of the trigger system and its components in the proton-proton collisions during the 2022 commissioning period as well as its expected performance in proton-proton and heavy-ion collisions for the remainder of the third LHC data-taking period (2022–2025)

    Evidence of pair production of longitudinally polarised vector bosons and study of CP properties in ZZ → 4ℓ events with the ATLAS detector at √s = 13 TeV

    Get PDF
    A study of the polarisation and CP properties in ZZ production is presented. The used data set corresponds to an integrated luminosity of 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the Large Hadron Collider. The ZZ candidate events are reconstructed using two same-flavour opposite-charge electron or muon pairs. The production of two longitudinally polarised Z bosons is measured with a significance of 4.3 standard deviations, and its cross-section is measured in a fiducial phase space to be 2.45 ± 0.60 fb, consistent with the next-to-leading-order Standard Model prediction. The inclusive differential cross-section as a function of a CP-sensitive angular observable is also measured. The results are used to constrain anomalous CP-odd neutral triple gauge couplings

    Measurement of diferential cross-sections in tt¯ and tt¯+jets production in the lepton+jets fnal state in pp collisions at √s = 13 TeV using 140 fb−1 of ATLAS data

    Get PDF
    Diferential cross-sections for top-quark pair production, inclusively and in association with jets, are measured in pp collisions at a centre-of-mass energy of 13 TeV with the ATLAS detector at the LHC using an integrated luminosity of 140 fb−1. The events are selected with one charged lepton (electron or muon) and at least four jets. The differential cross-sections are presented at particle level as functions of several jet observables, including angular correlations, jet transverse momenta and invariant masses of the jets in the final state, which characterise the kinematics and dynamics of the top-antitop system and the hard QCD radiation in the system with associated jets. The typical precision is 5%–15% for the absolute differential cross-sections and 2%–4% for the normalised differential cross-sections. Next-to-leading-order and next-to-next-to-leading-order QCD predictions are found to provide an adequate description of the rate and shape of the jet-angular observables. The description of the transverse momentum and invariant mass observables is improved when next-to-next-to-leading-order QCD corrections are included

    Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for electroweak production of wino-like chargino pairs, χ˜ + 1 χ˜ − 1 , and of wino-like chargino and next-to-lightest neutralino, χ˜ ± 1 χ˜ 0 2 , are presented. The models explored assume that the charginos decay into a W boson and the lightest neutralino, χ˜ ± 1 → W±χ˜ 0 1 . The next-to-lightest neutralinos are degenerate in mass with the chargino and decay to χ˜ 0 1 and either a Z or a Higgs boson, χ˜ 0 2 → Zχ˜ 0 1 or hχ˜ 0 1 . The searches exploit the presence of a single isolated lepton and missing transverse momentum from the W boson decay products and the lightest neutralinos, and the presence of jets from hadronically decaying Z or W bosons or from the Higgs boson decaying into a pair of b-quarks. The searches use 139 fb−1 of √ s = 13 TeV proton-proton collisions data collected by the ATLAS detector at the Large Hadron Collider between 2015 and 2018. No deviations from the Standard Model expectations are found, and 95% confdence level exclusion limits are set. Chargino masses ranging from 260 to 520 GeV are excluded for a massless χ˜ 0 1 in chargino pair production models. Degenerate chargino and next-to-lightest neutralino masses ranging from 260 to 420 GeV are excluded for a massless χ˜ 0 1 for χ˜ 0 2 → Zχ˜ 0 1 . For decays through an on-shell Higgs boson and for mass-splitting between χ˜ ± 1 /χ˜ 0 2 and χ˜ 0 1 as small as the Higgs boson mass, mass limits are improved by up to 40 GeV in the range of 200–260 GeV and 280–470 GeV compared to previous ATLAS constraints

    Measurement of the VH,H → ττ process with the ATLAS detector at 13 TeV

    Get PDF
    A measurement of the Standard Model Higgs boson produced in association with a W or Z boson and decaying into a pair of τ-leptons is presented. This search is based on proton-proton collision data collected at √s = 13 TeV by the ATLAS experiment at the LHC corresponding to an integrated luminosity of 140 fb−1. For the Higgs boson candidate, only final states with at least one τ-lepton decaying hadronically (τ →hadrons + vτ ) are considered. For the vector bosons, only leptonic decay channels are considered: Z → ℓℓ and W → ℓvℓ, with ℓ = e, ÎŒ. An excess of events over the expected background is found with an observed (expected) significance of 4.2 (3.6) standard deviations, providing evidence of the Higgs boson produced in association with a vector boson and decaying into a pair of τ-leptons. The ratio of the measured cross-section to the Standard Model prediction is Όττ VH = 1.28 +0.30 −0.29 (stat.) +0.25 −0.21 (syst.). This result represents the most accurate measurement of the VH(ττ) process achieved to date

    Searches for exclusive Higgs boson decays into D⁎γ and Z boson decays into D0γ and Ks0γ in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    Searches for exclusive decays of the Higgs boson into D⁎γ and of the Z boson into D0γ and Ks0γ can probe flavour-violating Higgs boson and Z boson couplings to light quarks. Searches for these decays are performed with a pp collision data sample corresponding to an integrated luminosity of 136.3 fb−1 collected at s=13TeV between 2016–2018 with the ATLAS detector at the CERN Large Hadron Collider. In the D⁎γ and D0γ channels, the observed (expected) 95% confidence-level upper limits on the respective branching fractions are B(H→D⁎γ)<1.0(1.2)×10−3, B(Z→D0γ)<4.0(3.4)×10−6, while the corresponding results in the Ks0γ channel are B(Z→Ks0γ)<3.1(3.0)×10−6

    Measurement of the tt¯ cross section and its ratio to the Z production cross section using pp collisions at √s = 13.6 TeV with the ATLAS detector

    Get PDF
    The inclusive top-quark-pair production cross section σttÂŻ and its ratio to the Z-boson production cross section have been measured in proton–proton collisions at √s = 13.6 TeV, using 29 fb−1 of data collected in 2022 with the ATLAS experiment at the Large Hadron Collider. Using events with an opposite-charge electron-muon pair and b-tagged jets, and assuming Standard Model decays, the top-quark-pair production cross section is measured to be σttÂŻ=850±3(stat.)±18(syst.)±20(lumi.) pb. The ratio of the ttÂŻ and the Z-boson production cross sections is also measured, where the Z-boson contribution is determined for inclusive e+e− and ÎŒ+Ό− events in a fiducial phase space. The relative uncertainty on the ratio is reduced compared to the ttÂŻ cross section, thanks to the cancellation of several systematic uncertainties. The result for the ratio, RttÂŻ/Z=1.145±0.003(stat.)±0.021(syst.)±0.002(lumi.) is consistent with the Standard Model prediction using the PDF4LHC21 PDF set
    • 

    corecore