1,125 research outputs found
Alcator C-Mod papers presented at the 9th joint workshop on electron cyclotron emission and electron cyclotron resonance heating
A review of Monte Carlo simulations of polymers with PERM
In this review, we describe applications of the pruned-enriched Rosenbluth
method (PERM), a sequential Monte Carlo algorithm with resampling, to various
problems in polymer physics. PERM produces samples according to any given
prescribed weight distribution, by growing configurations step by step with
controlled bias, and correcting "bad" configurations by "population control".
The latter is implemented, in contrast to other population based algorithms
like e.g. genetic algorithms, by depth-first recursion which avoids storing all
members of the population at the same time in computer memory. The problems we
discuss all concern single polymers (with one exception), but under various
conditions: Homopolymers in good solvents and at the point, semi-stiff
polymers, polymers in confining geometries, stretched polymers undergoing a
forced globule-linear transition, star polymers, bottle brushes, lattice
animals as a model for randomly branched polymers, DNA melting, and finally --
as the only system at low temperatures, lattice heteropolymers as simple models
for protein folding. PERM is for some of these problems the method of choice,
but it can also fail. We discuss how to recognize when a result is reliable,
and we discuss also some types of bias that can be crucial in guiding the
growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011
Deposition of earth-abundant p-type CuBr films with high hole conductivity and realization of p-CuBr/n-Si heterojunction solar cell
We present details of the deposition of transparent and earth-abundant p-type CuBr films with high hole conductivity and the fabrication and characterization of a prototype solar cell based on p-CuBr/n-Si heterojunctions. p-type CuBr films with typical resistivities and hole concentrations of 7×10-1 Ωcm and 7.5×1019 cm-3, respectively, are deposited by thermal evaporation followed by oxygen plasma treatment. The transparent p-type films show strong room temperature photoluminescence at ~2.97 eV. The current voltage (I-V) characteristics of the heterojunctions show good diode behaviour. Power conversion efficiency of ~ 2 % was achieved for the heterojunction device without any optimization of the cell structure under AM 1.5 illumination condition with a short circuit current (Jsc) and open circuit voltage (Voc) of 13.2 mA/cm2 and 0.44 V, respectively
Non-spherical shapes of capsules within a fourth-order curvature model
We minimize a discrete version of the fourth-order curvature based Landau
free energy by extending Brakke's Surface Evolver. This model predicts
spherical as well as non-spherical shapes with dimples, bumps and ridges to be
the energy minimizers. Our results suggest that the buckling and faceting
transitions, usually associated with crystalline matter, can also be an
intrinsic property of non-crystalline membranes.Comment: 6 pages, 4 figures (LaTeX macros EPJ), accepted for publication in
EPJ
Racetrack Inflation
We develop a model of eternal topological inflation using a racetrack
potential within the context of type IIB string theory with KKLT volume
stabilization. The inflaton field is the imaginary part of the K\"ahler
structure modulus, which is an axion-like field in the 4D effective field
theory. This model does not require moving branes, and in this sense it is
simpler than other models of string theory inflation. Contrary to
single-exponential models, the structure of the potential in this example
allows for the existence of saddle points between two degenerate local minima
for which the slow-roll conditions can be satisfied in a particular range of
parameter space. We conjecture that this type of inflation should be present in
more general realizations of the modular landscape. We also consider
`irrational' models having a dense set of minima, and discuss their possible
relevance for the cosmological constant problem.Comment: 23 pages 7 figures. The final version with minor modifications, to
appear in JHE
Holographic Dark Energy Model and Scalar-Tensor Theories
We study the holographic dark energy model in a generalized scalar tensor
theory. In a universe filled with cold dark matter and dark energy, the effect
of potential of the scalar field is investigated in the equation of state
parameter. We show that for a various types of potentials, the equation of
state parameter is negative and transition from deceleration to acceleration
expansion of the universe is possible.Comment: 11 pages, no figure. To appear in General Relativity and Gravitatio
Spontaneous Creation of Inflationary Universes and the Cosmic Landscape
We study some gravitational instanton solutions that offer a natural
realization of the spontaneous creation of inflationary universes in the brane
world context in string theory. Decoherence due to couplings of higher
(perturbative) modes of the metric as well as matter fields modifies the
Hartle-Hawking wavefunction for de Sitter space. Generalizing this new
wavefunction to be used in string theory, we propose a principle in string
theory that hopefully will lead us to the particular vacuum we live in, thus
avoiding the anthropic principle. As an illustration of this idea, we give a
phenomenological analysis of the probability of quantum tunneling to various
stringy vacua. We find that the preferred tunneling is to an inflationary
universe (like our early universe), not to a universe with a very small
cosmological constant (i.e., like today's universe) and not to a 10-dimensional
uncompactified de Sitter universe. Such preferred solutions are interesting as
they offer a cosmological mechanism for the stabilization of extra dimensions
during the inflationary epoch.Comment: 52 pages, 7 figures, 1 table. Added discussion on supercritical
string vacua, added reference
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
Interacting Ricci Dark Energy with Logarithmic Correction
Motivated by the holographic principle, it has been suggested that the dark
energy density may be inversely proportional to the area of the event
horizon of the universe. However, such a model would have a causality problem.
In this work, we consider the entropy-corrected version of the holographic dark
energy model in the non-flat FRW universe and we propose to replace the future
event horizon area with the inverse of the Ricci scalar curvature. We obtain
the equation of state (EoS) parameter , the deceleration
parameter and in the presence of interaction between Dark
Energy (DE) and Dark Matter (DM). Moreover, we reconstruct the potential and
the dynamics of the tachyon, K-essence, dilaton and quintessence scalar field
models according to the evolutionary behavior of the interacting
entropy-corrected holographic dark energy model.Comment: 24 pages, accepted for publication in 'Astrophysics and Space
Science, DOI:10.1007/s10509-012-1031-8
Interacting Three Fluid System and Thermodynamics of the Universe Bounded by the Event Horizon
The work deals with the thermodynamics of the universe bounded by the event
horizon. The matter in the universe has three constituents namely dark energy,
dark matter and radiation in nature and interaction between then is assumed.
The variation of entropy of the surface of the horizon is obtained from unified
first law while matter entropy variation is calculated from the Gibbss' law.
Finally, validity of the generalized second law of thermodynamics is examined
and conclusions are written point wise.Comment: 7 page
- …
