309 research outputs found

    Germination of Bacillus cereus spores in response to L-alanine and to inosine: the roles of gerL and gerQ operons

    Get PDF
    Bacillus cereus 569 (ATCC 10876) endospores germinate in response to inosine or L-alanine, the most rapid germination response being elicited by a combination of these germinants. The gerI operon has already been characterized as a homologue of the gerA spore-germination receptor family of operons found in all Bacillus spp. examined; the primary defect in gerI mutant spores is in the inosine germination response, although spores were also slower to germinate in L-alanine. Additional transposon-insertion mutants, from similar Tn917-LTV1 mutagenesis and enrichment experiments, now define two more operons, also members of the family of gerA homologues, important in L-alanine and inosine germination. Transposon insertions were identified in an alanine-specific germination locus, named gerL, which represents an operon of three genes, termed gerLA, gerLB and gerLC. By examining the residual germination response to L-alanine in gerI and gerL mutants, it was deduced that the GerL proteins contribute most strongly to the L-alanine germination response, and that the GerI proteins, required primarily in inosine germination, mediate only much slower germination responses to alanine. The L-alanine germination responses mediated by GerL and GerI proteins differ in their germination rates, temperature optima and germinant concentration dependence. The gerQ locus, again identified by transposon insertion, is a second inosine-related germinant-receptor operon. GerQ and GerI proteins are both required for the germination response to inosine as sole germinant, but GerQ has no role in L-alanine germination. Although near-identical homologues of gerI and gerL operons are evident in the Bacillus anthracis genome sequence, there is no evidence of a close homologue of gerQ

    Evolutionary Relationships and Range Evolution of Greenhood Orchids (Subtribe Pterostylidinae): Insights From Plastid Phylogenomics

    Get PDF
    Australia harbours a rich and highly endemic orchid flora with over 90% of native species found nowhere else. However, little is known about the assembly and evolution of Australia’s orchid flora. Here, we used a phylogenomic approach to infer evolutionary relationships, divergence times and range evolution in Pterostylidinae (Orchidoideae), the second largest subtribe in the Australian orchid flora, comprising the genera Pterostylis and Achlydosa. Phylogenetic analysis of 75 plastid genes provided well-resolved and supported phylogenies. Intrageneric relationships in Pterostylis were clarified and monophyly of eight of 10 sections supported. Achlydosa was found to not form part of Pterostylidinae and instead merits recognition at subtribal level, as Achlydosinae. Pterostylidinae were inferred to have originated in eastern Australia in the early Oligocene, coinciding with the complete separation of Australia from Antarctica and the onset of the Antarctic Circumpolar Current, which led to profound changes in the world’s climate. Divergence of all major lineages occurred during the Miocene, accompanied by increased aridification and seasonality of the Australian continent, resulting in strong vegetational changes from rainforest to more open sclerophyllous vegetation. The majority of extant species were inferred to have originated in the Quaternary, from the Pleistocene onwards. The rapid climatic oscillations during the Pleistocene may have acted as important driver of speciation in Pterostylidinae. The subtribe underwent lineage diversification mainly within its ancestral range, in eastern Australia. Long-distance dispersals to southwest Australia commenced from the late Miocene onwards, after the establishment of the Nullarbor Plain, which constitutes a strong edaphic barrier to mesic plants. Range expansions from the mesic into the arid zone of eastern Australia (Eremaean region) commenced from the early Pleistocene onwards. Extant distributions of Pterostylidinae in other Australasian regions, such as New Zealand and New Caledonia, are of more recent origin, resulting from long-distance dispersals from the Pliocene onwards. Temperate eastern Australia was identified as key source area for dispersals to other Australasian regions

    Dynamics of liquid He-4 in confined geometries from Time-Dependent Density Functional calculations

    Full text link
    We present numerical results obtained from Time-Dependent Density Functional calculations of the dynamics of liquid He-4 in different environments characterized by geometrical confinement. The time-dependent density profile and velocity field of He-4 are obtained by means of direct numerical integration of the non-linear Schrodinger equation associated with a phenomenological energy functional which describes accurately both the static and dynamic properties of bulk liquid He-4. Our implementation allows for a general solution in 3-D (i.e. no symmetries are assumed in order to simplify the calculations). We apply our method to study the real-time dynamics of pure and alkali-doped clusters, of a monolayer film on a weakly attractive surface and a nano-droplet spreading on a solid surface.Comment: q 1 tex file + 9 Ps figure

    Structural and dynamical properties of superfluid helium: a density functional approach

    Full text link
    We present a novel density functional for liquid 4He, properly accounting for the static response function and the phonon-roton dispersion in the uniform liquid. The functional is used to study both structural and dynamical properties of superfluid helium in various geometries. The equilibrium properties of the free surface, droplets and films at zero temperature are calculated. Our predictions agree closely to the results of ab initio Monte Carlo calculations, when available. The introduction of a phenomenological velocity dependent interaction, which accounts for backflow effects, is discussed. The spectrum of the elementary excitations of the free surface and films is studied.Comment: 37 pages, REVTeX 3.0, figures on request at [email protected]

    Western Irish Sea Nephrops Grounds (FU15) 2017 UWTV Survey Report and catch options for 2018

    Get PDF
    This report provides the main results and findings of the 15th annual underwater television survey on the ‘Irish sea west Nephrops grounds’ ICES assessment area, Functional Unit 15. The survey was multi-disciplinary in nature collecting UWTV and other ecosystem data. The 2017 design consisted of a randomised isometric grid of 100 stations at 4.5 nautical mile intervals out over the full known extent the stock. The resulting krigged burrow abundance estimate was 5.3 billion burrows. This was a similar result of that obtained in 2006, and 4% higher than the abundance in 2016. In contrast to 2016 the spatial distribution of burrows appears more homogenous across the survey area. Overall densities are high and abundance remains stable, well above MSY Btrigger. Reducing the number of stations compared to 2011 has not affected the accuracy of the survey estimate to date. The CV (or relative standard error) of 3% is in line with previous estimates and well below the upper limit of 20% recommended by SGNEPS 2012. Total catches and landings options at various different fishing mortalities were calculated and fishing at Fmsy in 2017 implies a total catch option at Fmsy (=Fmax) of 11,807 tonnes which results in landings of no more than 9,630 tonnes. The only sea-pen species observed in 2017 was Virgularia mirabilis and this was found at 16% of stations ranging from occasional to common, with high densities observed in the south-west of the ground. Trawl marks were noted at 36% of the UWTV stations

    From nonwetting to prewetting: the asymptotic behavior of 4He drops on alkali substrates

    Get PDF
    We investigate the spreading of 4He droplets on alkali surfaces at zero temperature, within the frame of Finite Range Density Functional theory. The equilibrium configurations of several 4He_N clusters and their asymptotic trend with increasing particle number N, which can be traced to the wetting behavior of the quantum fluid, are examined for nanoscopic droplets. We discuss the size effects, inferring that the asymptotic properties of large droplets correspond to those of the prewetting film

    To wet or not to wet: that is the question

    Full text link
    Wetting transitions have been predicted and observed to occur for various combinations of fluids and surfaces. This paper describes the origin of such transitions, for liquid films on solid surfaces, in terms of the gas-surface interaction potentials V(r), which depend on the specific adsorption system. The transitions of light inert gases and H2 molecules on alkali metal surfaces have been explored extensively and are relatively well understood in terms of the least attractive adsorption interactions in nature. Much less thoroughly investigated are wetting transitions of Hg, water, heavy inert gases and other molecular films. The basic idea is that nonwetting occurs, for energetic reasons, if the adsorption potential's well-depth D is smaller than, or comparable to, the well-depth of the adsorbate-adsorbate mutual interaction. At the wetting temperature, Tw, the transition to wetting occurs, for entropic reasons, when the liquid's surface tension is sufficiently small that the free energy cost in forming a thick film is sufficiently compensated by the fluid- surface interaction energy. Guidelines useful for exploring wetting transitions of other systems are analyzed, in terms of generic criteria involving the "simple model", which yields results in terms of gas-surface interaction parameters and thermodynamic properties of the bulk adsorbate.Comment: Article accepted for publication in J. Low Temp. Phy

    Western Irish Sea Nephrops Grounds (FU15) 2018 UWTV Survey Report and catch options for 2019

    Get PDF
    This report provides the main results and findings of the 16th annual underwater television survey on the ‘Irish sea west Nephrops grounds’ ICES assessment area, Functional Unit 15. The survey was multi-disciplinary in nature collecting UWTV and other ecosystem data. The 2018 design consisted of a randomised isometric grid of 100 stations at 4.5 nautical mile intervals out over the full known extent the stock. The resulting krigged burrow abundance estimate was 4.9 billion burrows. This was a similar result of that obtained in 2011, and 9% lower than the abundance in 2017. In contrast to 2017 the spatial distribution of burrows appears more homogenous across the survey area, with high densities in the SW of the ground in shallower water, and higher densities in the NW of the ground in deep water. Overall densities are high and abundance remains stable, well above MSY Btrigger. Reducing the number of stations compared to 2011 has not affected the accuracy of the survey estimate to date. The CV (or relative standard error) of 3% is in line with previous estimates and well below the upper limit of 20% recommended by SGNEPS 2012. Total catches and landings options at various different fishing mortalities were calculated and fishing at Fmsy in 2018 implies a total catch option at Fmsy (=Fmax) of 11,107 tonnes which results in landings of no more than 8,959 tonnes. The sea-pen species observed in 2018 was predominantly Virgularia mirabilis, with one potential observation of Pennatula phosphorea (which requires verification). Sea-pens were observed at 20% of stations with high densities observed in the south-west of the ground. Trawl marks were noted at 26% of the UWTV stations

    Fitting the integrated Spectral Energy Distributions of Galaxies

    Full text link
    Fitting the spectral energy distributions (SEDs) of galaxies is an almost universally used technique that has matured significantly in the last decade. Model predictions and fitting procedures have improved significantly over this time, attempting to keep up with the vastly increased volume and quality of available data. We review here the field of SED fitting, describing the modelling of ultraviolet to infrared galaxy SEDs, the creation of multiwavelength data sets, and the methods used to fit model SEDs to observed galaxy data sets. We touch upon the achievements and challenges in the major ingredients of SED fitting, with a special emphasis on describing the interplay between the quality of the available data, the quality of the available models, and the best fitting technique to use in order to obtain a realistic measurement as well as realistic uncertainties. We conclude that SED fitting can be used effectively to derive a range of physical properties of galaxies, such as redshift, stellar masses, star formation rates, dust masses, and metallicities, with care taken not to over-interpret the available data. Yet there still exist many issues such as estimating the age of the oldest stars in a galaxy, finer details ofdust properties and dust-star geometry, and the influences of poorly understood, luminous stellar types and phases. The challenge for the coming years will be to improve both the models and the observational data sets to resolve these uncertainties. The present review will be made available on an interactive, moderated web page (sedfitting.org), where the community can access and change the text. The intention is to expand the text and keep it up to date over the coming years.Comment: 54 pages, 26 figures, Accepted for publication in Astrophysics & Space Scienc
    corecore