75 research outputs found

    Climate driven trends in London's urban heat island intensity reconstructed over 70 years using a generalized additive model

    Get PDF
    Long-term urban heat island (UHI) observations are uncommon and where available, are generally unable to distinguish changing climate drivers from urban expansion; neither driver is treated independently. We overcome this limitation using a generalized additive model to learn the variability in UHI intensity (UHII) at a central London weather station (St James's Park) over a 10-year observation period (2010–2019). We then use the model to reconstruct 70 years (1950–2019) of monthly night-time UHII variability using ERA5 reanalysis data both as a reference in UHII calculation and for the predictors. We find considerable variability both seasonally and annually within the UHII time series (monthly mean maximum UHIIs are 1.4–2.9 °C). Applying extreme value analysis to the time series we show that monthly mean maximum UHIIs are likely to exceed 2.75 °C once every 11 years. Considering that most studies observe or model UHIIs for less than a year, they will likely misrepresent this UHII variability. Nevertheless, despite moving to a warmer background climate, London's UHII has not significantly changed across the period of analysis (1950–2019). The data-driven methods we create in this study are easily transferable to other cities

    Cosmic distance-duality as probe of exotic physics and acceleration

    Get PDF
    In cosmology, distances based on standard candles (e.g. supernovae) and standard rulers (e.g. baryon oscillations) agree as long as three conditions are met: (1) photon number is conserved, (2) gravity is described by a metric theory with (3) photons travelling on unique null geodesics. This is the content of distance-duality (the reciprocity relation) which can be violated by exotic physics. Here we analyse the implications of the latest cosmological data sets for distance-duality. While broadly in agreement and confirming acceleration we find a 2-sigma violation caused by excess brightening of SN-Ia at z > 0.5, perhaps due to lensing magnification bias. This brightening has been interpreted as evidence for a late-time transition in the dark energy but because it is not seen in the d_A data we argue against such an interpretation. Our results do, however, rule out significant SN-Ia evolution and extinction: the "replenishing" grey-dust model with no cosmic acceleration is excluded at more than 4-sigma despite this being the best-fit to SN-Ia data alone, thereby illustrating the power of distance-duality even with current data sets.Comment: 6 pages, 4 colour figures. Version accepted as a Rapid Communication in PR

    Aspects of String-Gas Cosmology at Finite Temperature

    Get PDF
    We study string-gas cosmology in dilaton gravity, inspired by the fact that it naturally arises in a string theory context. Our main interest is the thermodynamical treatment of the string-gas and the resulting implications for the cosmology. Within an adiabatic approximation, thermodynamical equilibrium and a small, toroidal universe as initial conditions, we numerically solve the corresponding equations of motions in two different regimes describing the string-gas thermodynamics: (i) the Hagedorn regime, with a single scale factor, and (ii) an almost-radiation dominated regime, which includes the leading corrections due to the lightest Kaluza Klein and winding modes, with two scale factors. The scale factor in the Hagedorn regime exhibits very slow time evolution with nearly constant energy and negligible pressure. By contrast, in case (ii) we find interesting cosmological solutions where the large dimensions continue to expand and the small ones are kept undetectably small.Comment: 21 pages, 5 eps figure

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    The Evolution of Inverse Power Law Quintessence at Low Redshift

    Full text link
    Quintessence models based on a scalar field, phi, with an inverse power law potential display simple tracking behavior at early times, when the quintessence energy density, rho_phi, is sub-dominant. At late times, when rho_phi becomes comparable to the matter density, the evolution of phi diverges from its scaling behavior. We calculate the first order departure of phi from its tracker solution at low redshift. Our results for the evolution of phi, rho_phi, Omega_phi, and w are suprisingly accurate even down to z=0. We find that w and Omega_phi are related linearly to first order. We also derive a semi-analytic expression for w(z) which is accurate to within a few percent. Our analytic techniques are potentially applicable to any quintessence model in which the quintessence component comes to dominate at late times.Comment: 6 pages, 6 figures, new figure added, numerous clarification

    A model independent approach to the dark energy equation of state

    Full text link
    The consensus of opinion in cosmology is that the Universe is currently undergoing a period of accelerated expansion. With current and proposed high precision experiments it offers the hope of being able to discriminate between the two competing models that are being suggested to explain the observations, namely a cosmological constant or a time dependent `Quintessence' model. The latter suffers from a plethora of scalar field potentials all leading to similar late time behaviour of the universe, hence to a lack of predictability. In this paper, we develop a model independent approach which simply involves parameterizing the dark energy equation of state in terms of known observables. This allows to analyse the impact dark energy has had on cosmology without the need to refer to particular scalar field models and opens up the possibility that future experiments will be able to constrain the dark energy equation of state in a model independent manner.Comment: 6 pages, 5 figures. Final version to appear in PR

    Modern temporal network theory: A colloquium

    Full text link
    The power of any kind of network approach lies in the ability to simplify a complex system so that one can better understand its function as a whole. Sometimes it is beneficial, however, to include more information than in a simple graph of only nodes and links. Adding information about times of interactions can make predictions and mechanistic understanding more accurate. The drawback, however, is that there are not so many methods available, partly because temporal networks is a relatively young field, partly because it more difficult to develop such methods compared to for static networks. In this colloquium, we review the methods to analyze and model temporal networks and processes taking place on them, focusing mainly on the last three years. This includes the spreading of infectious disease, opinions, rumors, in social networks; information packets in computer networks; various types of signaling in biology, and more. We also discuss future directions.Comment: Final accepted versio

    Tocilizumab in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial

    Get PDF
    Background: In this study, we aimed to evaluate the effects of tocilizumab in adult patients admitted to hospital with COVID-19 with both hypoxia and systemic inflammation. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]), is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. Those trial participants with hypoxia (oxygen saturation <92% on air or requiring oxygen therapy) and evidence of systemic inflammation (C-reactive protein ≥75 mg/L) were eligible for random assignment in a 1:1 ratio to usual standard of care alone versus usual standard of care plus tocilizumab at a dose of 400 mg–800 mg (depending on weight) given intravenously. A second dose could be given 12–24 h later if the patient's condition had not improved. The primary outcome was 28-day mortality, assessed in the intention-to-treat population. The trial is registered with ISRCTN (50189673) and ClinicalTrials.gov (NCT04381936). Findings: Between April 23, 2020, and Jan 24, 2021, 4116 adults of 21 550 patients enrolled into the RECOVERY trial were included in the assessment of tocilizumab, including 3385 (82%) patients receiving systemic corticosteroids. Overall, 621 (31%) of the 2022 patients allocated tocilizumab and 729 (35%) of the 2094 patients allocated to usual care died within 28 days (rate ratio 0·85; 95% CI 0·76–0·94; p=0·0028). Consistent results were seen in all prespecified subgroups of patients, including those receiving systemic corticosteroids. Patients allocated to tocilizumab were more likely to be discharged from hospital within 28 days (57% vs 50%; rate ratio 1·22; 1·12–1·33; p<0·0001). Among those not receiving invasive mechanical ventilation at baseline, patients allocated tocilizumab were less likely to reach the composite endpoint of invasive mechanical ventilation or death (35% vs 42%; risk ratio 0·84; 95% CI 0·77–0·92; p<0·0001). Interpretation: In hospitalised COVID-19 patients with hypoxia and systemic inflammation, tocilizumab improved survival and other clinical outcomes. These benefits were seen regardless of the amount of respiratory support and were additional to the benefits of systemic corticosteroids. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Convalescent plasma in patients admitted to hospital with COVID-19 (RECOVERY): a randomised controlled, open-label, platform trial

    Get PDF
    Background: Many patients with COVID-19 have been treated with plasma containing anti-SARS-CoV-2 antibodies. We aimed to evaluate the safety and efficacy of convalescent plasma therapy in patients admitted to hospital with COVID-19. Methods: This randomised, controlled, open-label, platform trial (Randomised Evaluation of COVID-19 Therapy [RECOVERY]) is assessing several possible treatments in patients hospitalised with COVID-19 in the UK. The trial is underway at 177 NHS hospitals from across the UK. Eligible and consenting patients were randomly assigned (1:1) to receive either usual care alone (usual care group) or usual care plus high-titre convalescent plasma (convalescent plasma group). The primary outcome was 28-day mortality, analysed on an intention-to-treat basis. The trial is registered with ISRCTN, 50189673, and ClinicalTrials.gov, NCT04381936. Findings: Between May 28, 2020, and Jan 15, 2021, 11558 (71%) of 16287 patients enrolled in RECOVERY were eligible to receive convalescent plasma and were assigned to either the convalescent plasma group or the usual care group. There was no significant difference in 28-day mortality between the two groups: 1399 (24%) of 5795 patients in the convalescent plasma group and 1408 (24%) of 5763 patients in the usual care group died within 28 days (rate ratio 1·00, 95% CI 0·93–1·07; p=0·95). The 28-day mortality rate ratio was similar in all prespecified subgroups of patients, including in those patients without detectable SARS-CoV-2 antibodies at randomisation. Allocation to convalescent plasma had no significant effect on the proportion of patients discharged from hospital within 28 days (3832 [66%] patients in the convalescent plasma group vs 3822 [66%] patients in the usual care group; rate ratio 0·99, 95% CI 0·94–1·03; p=0·57). Among those not on invasive mechanical ventilation at randomisation, there was no significant difference in the proportion of patients meeting the composite endpoint of progression to invasive mechanical ventilation or death (1568 [29%] of 5493 patients in the convalescent plasma group vs 1568 [29%] of 5448 patients in the usual care group; rate ratio 0·99, 95% CI 0·93–1·05; p=0·79). Interpretation: In patients hospitalised with COVID-19, high-titre convalescent plasma did not improve survival or other prespecified clinical outcomes. Funding: UK Research and Innovation (Medical Research Council) and National Institute of Health Research

    Novel Production Methods

    No full text
    corecore