1,805 research outputs found
Experimental and theoretical evidence for a hydrogen stabilized c 2x2 reconstruction of the P rich InP 001 surface
The formation of hydrogen bonds was investigated on the P rich InP 001 surface employing attenuated total reflection Fourier transform infrared spectroscopy, low energy electron diffraction, and total energy density functional theory calculations. Strong evidence was found for a c 2 2 2P 3H reconstruction with a higher hydrogen coverage than is characteristic for the metal organic chemical vapor deposition prepared hydrogen stabilized 2 2 2D 2H surface. The new surface reconstruction was formed upon exposure to atomic hydrogen. Complete transformation of all the metastable atomic configurations to form the new surface reconstruction was not achieved, since prior to this the surface began to deteriorate. The latter effect was monitored as the formation of In H bonds. Two observations, i.e., nearly complete screening of the infrared peaks for excitation with p polarized light and a pronounced redshift of P H peaks with increasing hydrogen coverage were attributed to dipole dipole interaction between the vibrating adsorbate
Single-molecule diffusion measurements of H-Ras at the plasma membrane of live cells reveal microdomain localization upon activation
Animal sciencesBiological and Soft Matter Physic
Screening of Dirac flavor structure in the seesaw and neutrino mixing
We consider the mechanism of screening of the Dirac flavor structure in the
context of the double seesaw mechanism. As a consequence of screening, the
structure of the light neutrino mass matrix, m_\nu, is determined essentially
by the structure of the (Majorana) mass matrix, M_S, of new super-heavy (Planck
scale) neutral fermions S. We calculate effects of the renormalization group
running in order to investigate the stability of the screening mechanism with
respect to radiative corrections. We find that screening is stable in the
supersymmetric case, whereas in the standard model it is unstable for certain
structures of M_S. The screening mechanism allows us to reconcile the
(approximate) quark-lepton symmetry and the strong difference of the mixing
patterns in the quark and lepton sectors. It opens new possibilities to explain
a quasi-degenerate neutrino mass spectrum, special ``neutrino'' symmetries and
quark-lepton complementarity. Screening can emerge from certain flavor
symmetries or Grand Unification.Comment: 27 pages, 3 figures; references added, discussion of the E6 model
modifie
Comment on "Resolving the 180-deg Ambiguity in Solar Vector Magnetic Field Data: Evaluating the Effects of Noise, Spatial Resolution, and Method Assumptions"
In a recent paper, Leka at al. (Solar Phys. 260, 83, 2009)constructed a
synthetic vector magnetogram representing a three-dimensional magnetic
structure defined only within a fraction of an arcsec in height. They rebinned
the magnetogram to simulate conditions of limited spatial resolution and then
compared the results of various azimuth disambiguation methods on the resampled
data. Methods relying on the physical calculation of potential and/or
non-potential magnetic fields failed in nearly the same, extended parts of the
field of view and Leka et al. (2009) attributed these failures to the limited
spatial resolution. This study shows that the failure of these methods is not
due to the limited spatial resolution but due to the narrowly defined test
data. Such narrow magnetic structures are not realistic in the real Sun.
Physics-based disambiguation methods, adapted for solar magnetic fields
extending to infinity, are not designed to handle such data; hence, they could
only fail this test. I demonstrate how an appropriate limited-resolution
disambiguation test can be performed by constructing a synthetic vector
magnetogram very similar to that of Leka et al. (2009) but representing a
structure defined in the semi-infinite space above the solar photosphere. For
this magnetogram I find that even a simple potential-field disambiguation
method manages to resolve the ambiguity very successfully, regardless of
limited spatial resolution. Therefore, despite the conclusions of Leka et al.
(2009), a proper limited-spatial-resolution test of azimuth disambiguation
methods is yet to be performed in order to identify the best ideas and
algorithms.Comment: Solar Physics, in press (19 pp., 5 figures, 2 tables
Renormalization Group Evolution of Dirac Neutrino Masses
There are good reasons why neutrinos could be Majorana particles, but there
exist also a number of very good reasons why neutrinos could have Dirac masses.
The latter option deserves more attention and we derive therefore analytic
expressions describing the renormalization group evolution of mixing angles and
of the CP phase for Dirac neutrinos. Radiative corrections to leptonic mixings
are in this case enhanced compared to the quark mixings because the hierarchy
of neutrino masses is milder and because the mixing angles are larger. The
renormalization group effects are compared to the precision of current and
future neutrino experiments. We find that, in the MSSM framework, radiative
corrections of the mixing angles are for large \tan\beta comparable to the
precision of future experiments.Comment: 19 pages, 5 figures; error in eq. 8 corrected, references adde
QED Effective Action at Finite Temperature: Two-Loop Dominance
We calculate the two-loop effective action of QED for arbitrary constant
electromagnetic fields at finite temperature T in the limit of T much smaller
than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the
thermal excitation of the internal photon. As an application, we study light
propagation and photon splitting in the presence of a magnetic background field
at low temperature. We furthermore discover a thermally induced contribution to
pair production in electric fields.Comment: 34 pages, 4 figures, LaTe
The Fourth Standard Model Family and the Competition in Standart Model Higgs Boson Search at Tevatron and LHC
The impact of the fourth Standard Model family on Higgs boson search at
Tevatron and LHC is reviewed.Comment: 7 pages, 13 figure
Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot
In recent high-resolution observations of complex active regions,
long-lasting and well-defined regions of strong flows were identified in major
flares and associated with bright kernels of visible, near-infrared, and X-ray
radiation. These flows, which occurred in the proximity of the magnetic neutral
line, significantly contributed to the generation of magnetic shear. Signatures
of these shear flows are strongly curved penumbral filaments, which are almost
tangential to sunspot umbrae rather than exhibiting the typical radial
filamentary structure. Solar active region NOAA 10756 was a moderately complex,
beta-delta sunspot group, which provided an opportunity to extend previous
studies of such shear flows to quieter settings. We conclude that shear flows
are a common phenomenon in complex active regions and delta spots. However,
they are not necessarily a prerequisite condition for flaring. Indeed, in the
present observations, the photospheric shear flows along the magnetic neutral
line are not related to any change of the local magnetic shear. We present
high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum
reflector at Big Bear Solar Observatory (BBSO). Time series of
speckle-reconstructed white-light images and two-dimensional spectroscopic data
were combined to study the temporal evolution of the three-dimensional vector
flow field in the beta-delta sunspot group. An hour-long data set of consistent
high quality was obtained, which had a cadence of better than 30 seconds and
sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted
to Solar Physic
Renormalization Group Running of Lepton Mixing Parameters in See-Saw Models with Flavor Symmetry
We study the renormalization group running of the tri-bimaximal mixing
predicted by the two typical flavor models at leading order. Although the
textures of the mass matrices are completely different, the evolution of
neutrino mass and mixing parameters is found to display approximately the same
pattern. For both normal hierarchy and inverted hierarchy spectrum, the quantum
corrections to both atmospheric and reactor neutrino mixing angles are so small
that they can be neglected. The evolution of the solar mixing angle
depends on and neutrino mass spectrum, the deviation
from its tri-bimaximal value could be large. Taking into account the
renormalization group running effect, the neutrino spectrum is constrained by
experimental data on in addition to the self-consistency
conditions of the models, and the inverted hierarchy spectrum is disfavored for
large . The evolution of light-neutrino masses is approximately
described by a common scaling factor.Comment: 23 pages, 6figure
Soliton back-action evading measurement using spectral filtering
We report on a back-action evading (BAE) measurement of the photon number of
fiber optical solitons operating in the quantum regime. We employ a novel
detection scheme based on spectral filtering of colliding optical solitons. The
measurements of the BAE criteria demonstrate significant quantum state
preparation and transfer of the input signal to the signal and probe outputs
exiting the apparatus, displaying the quantum-nondemolition (QND) behavior of
the experiment.Comment: 5 pages, 5 figure
- …