1,784 research outputs found
Sperm chromatin anomalies can influence decondensation after intracytoplasmic sperm injection
In this study we investigated whether morphology and chromatin anomalies in human spermatozoa can influence fertilization after intracytoplasmic sperm injection (ICSI). We examined unfertilized oocytes, using the fluorochrome Hoechst 33342, to determine whether a relationship exists between failure of fertilization and sperm chromatin quality. Sperm chromatin packaging quality was assessed using the chromomydn A3 (CMA3) fluorochrome, and the presence of DNA damage in spermatozoa, using in-situ nick translation. Normal males present sperm parameters with a normal morphology of >20%, CMA3 fluorescence of <30% and exhibit endogenous nicks in <10% of their spermatozoa. When patients were separated according to these values no difference was observed in their fertilization rates after ICSL When the unfertilized ICSI oocytes were examined, we found that patients with CMA3 fluorescence of <30% and nicks in <10% of their spermatozoa had only 17.5 and 21.6% respectively of their unfertilized oocytes containing spermatozoa that remained condensed. In contrast, patients with higher CMA3 and nick values had a significantly higher number, 412 and 48.9%, of their unfertilized oocytes containing condensed spermatozoa. Sperm morphology did not show any such pattern. The percentage of spermatozoa which had initiated decondensation in unfertilized oocytes was not influenced by morphology, CMA3 fluorescence or nicks. In light of these results we postulate that poor chromatin packaging and/or damaged DNA may contribute to failure of sperm decondensation after ICSI and result in failure of fertilizatio
Theory of Phase Ordering Kinetics
The theory of phase ordering dynamics -- the growth of order through domain
coarsening when a system is quenched from the homogeneous phase into a
broken-symmetry phase -- is reviewed, with the emphasis on recent developments.
Interest will focus on the scaling regime that develops at long times after the
quench. How can one determine the growth laws that describe the time-dependence
of characteristic length scales, and what can be said about the form of the
associated scaling functions? Particular attention will be paid to systems
described by more complicated order parameters than the simple scalars usually
considered, e.g. vector and tensor fields. The latter are needed, for example,
to describe phase ordering in nematic liquid crystals, on which there have been
a number of recent experiments. The study of topological defects (domain walls,
vortices, strings, monopoles) provides a unifying framework for discussing
coarsening in these different systems.Comment: To appear in Advances in Physics. 85 pages, latex, no figures. For a
hard copy with figures, email [email protected]
Combined FUS+ basophilic inclusion body disease and atypical tauopathy presenting with an ALS/MND-plus phenotype
AIMS: Amyotrophic lateral sclerosis / motor neurone disease (ALS/MND) is characterised by the presence of inclusions containing TDP-43 within motor neurones. In rare cases, ALS/MND may be associated with inclusions containing other proteins, such as fused in sarcoma (FUS), whilst motor system pathology may rarely be a feature of other neurodegenerative disorders. We here have investigated the association of FUS and tau pathology. METHODS: We report a case with an ALS/MND-plus clinical syndrome which pathologically demonstrated both FUS pathology and an atypical tauopathy. RESULTS: Clinical motor involvement was predominantly upper motor neurone, and was accompanied by extrapyramidal features and sensory involvement, but with only minimal cognitive impairment. The presentation was sporadic and gene mutation screening was negative. Post-mortem study demonstrated inclusions positive for FUS, including basophilic inclusion bodies. This was associated with 4R-tauopathy, largely as non-fibrillary diffuse phospho-tau in neurones, with granulovacuolar degeneration in a more restricted distribution. Double-staining revealed that neurones contained both types of protein pathology. CONCLUSION: FUS-positive basophilic inclusion body disease is a rare cause of ALS/MND, but in this case was associated with an unusual atypical tauopathy. The coexistence of two such rare neuropathologies raises the question of a pathogenic interaction
Macroscopic Dynamics of Multi-Lane Traffic
We present a macroscopic model of mixed multi-lane freeway traffic that can
be easily calibrated to empirical traffic data, as is shown for Dutch highway
data. The model is derived from a gas-kinetic level of description, including
effects of vehicular space requirements and velocity correlations between
successive vehicles. We also give a derivation of the lane-changing rates. The
resulting dynamic velocity equations contain non-local and anisotropic
interaction terms which allow a robust and efficient numerical simulation of
multi-lane traffic. As demonstrated by various examples, this facilitates the
investigation of synchronization patterns among lanes and effects of on-ramps,
off-ramps, lane closures, or accidents.Comment: For related work see
http://www.theo2.physik.uni-stuttgart.de/helbing.htm
Recommended from our members
Fiber optic coherent laser radar 3D vision system
This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution
Critical point network for drainage between rough surfaces
In this paper, we present a network method for computing two-phase flows between two rough surfaces with significant contact areas. Low-capillary number drainage is investigated here since one-phase flows have been previously investigated in other contributions. An invasion percolation algorithm is presented for modeling slow displacement of a wetting fluid by a non wetting one between two rough surfaces. Short-correlated Gaussian process is used to model random rough surfaces.The algorithm is based on a network description of the fracture aperture field. The network is constructed from the identification of critical points (saddles and maxima) of the aperture field. The invasion potential is determined from examining drainage process in a flat mini-channel. A direct comparison between numerical prediction and experimental visualizations on an identical geometry has been performed for one realization of an artificial fracture with a moderate fractional contact area of about 0.3. A good agreement is found between predictions and observations
Particle acceleration in three-dimensional tearing configurations
In three-dimensional electromagnetic configurations that result from unstable
resistive tearing modes particles can efficiently be accelerated to
relativistic energies. To prove this resistive magnetohydrodynamic simulations
are used as input configurations for successive test particle simulations. The
simulations show the capability of three-dimensional non-linearly evolved
tearing modes to accelerate particles perpendicular to the plane of the
reconnecting magnetic field components. The simulations differ considerably
from analytical approaches by involving a realistic three-dimensional electric
field with a non-homogenous component parallel to the current direction. The
resulting particle spectra exhibit strong pitch-angle anisotropies. Typically,
about 5-8 % of an initially Maxwellian distribution is accelerated to the
maximum energy levels given by the macroscopic generalized electric potential
structure. Results are shown for both, non-relativistic particle acceleration
that is of interest, e.g., in the context of auroral arcs and solar flares, and
relativistic particle energization that is relevant, e.g., in the context of
active galactic nuclei.Comment: Physics of Plasmas, in prin
The in-plane paraconductivity in La_{2-x}Sr_xCuO_4 thin film superconductors at high reduced-temperatures: Independence of the normal-state pseudogap
The in-plane resistivity has been measured in (LSxCO)
superconducting thin films of underdoped (), optimally-doped
() and overdoped () compositions. These films were grown
on (100)SrTiO substrates, and have about 150 nm thickness. The in-plane
conductivity induced by superconducting fluctuations above the superconducting
transition (the so-called in-plane paraconductivity, ) was
extracted from these data in the reduced-temperature range
10^{-2}\lsim\epsilon\equiv\ln(T/\Tc)\lsim1. Such a
was then analyzed in terms of the
mean-field--like Gaussian-Ginzburg-Landau (GGL) approach extended to the
high- region by means of the introduction of a total-energy cutoff,
which takes into account both the kinetic energy and the quantum localization
energy of each fluctuating mode. Our results strongly suggest that at all
temperatures above Tc, including the high reduced-temperature region, the
doping mainly affects in LSxCO thin films the normal-state properties and that
its influence on the superconducting fluctuations is relatively moderate: Even
in the high- region, the in-plane paraconductivity is found to be
independent of the opening of a pseudogap in the normal state of the underdoped
films.Comment: 35 pages including 10 figures and 1 tabl
Effective interaction between helical bio-molecules
The effective interaction between two parallel strands of helical
bio-molecules, such as deoxyribose nucleic acids (DNA), is calculated using
computer simulations of the "primitive" model of electrolytes. In particular we
study a simple model for B-DNA incorporating explicitly its charge pattern as a
double-helix structure. The effective force and the effective torque exerted
onto the molecules depend on the central distance and on the relative
orientation. The contributions of nonlinear screening by monovalent counterions
to these forces and torques are analyzed and calculated for different salt
concentrations. As a result, we find that the sign of the force depends
sensitively on the relative orientation. For intermolecular distances smaller
than it can be both attractive and repulsive. Furthermore we report a
nonmonotonic behaviour of the effective force for increasing salt
concentration. Both features cannot be described within linear screening
theories. For large distances, on the other hand, the results agree with linear
screening theories provided the charge of the bio-molecules is suitably
renormalized.Comment: 18 pages, 18 figures included in text, 100 bibliog
- âŠ