1 research outputs found

    Simulations of the inelastic response of silicon to shock compression

    Get PDF
    Recent experiments employing nanosecond white-light X-ray diffraction have demonstrated a complex response of pure, single crystal silicon to shock compression on ultra-fast timescales. We present here details of a Lagrangian code which tracks both longitudinal and transverse strains, and successfully reproduces the experimental response by incorporating a model of the shock-induced, yet kinetically inhibited, phase transition. This model is also shown to reproduce results of classical molecular dynamics simulations of shock compressed silicon
    corecore