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Simulations of the inelastic response of silicon to shock compression
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Abstract

Recent experiments employing nanosecond white-light X-ray diffraction have demonstrated a complex response of pure,
single crystal silicon to shock compression on ultra-fast timescales. We present here details of a Lagrangian code which
tracks both longitudinal and transverse strains, and successfully reproduces the experimental response by incorporating
a model of the shock-induced, yet kinetically inhibited, phase transition. This model is also shown to reproduce results
of classical molecular dynamics simulations of shock compressed silicon.
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1. Introduction

The response of matter to rapid shock compression has
been a field of study for well over a century. One material
that has been a subject of particular interest for several
decades is single crystal silicon [1, 2, 3, 4]. Given that this
element can be manufactured in an almost perfect, defect-
free form, it might first appear to be an ideal test-bed for
studying the fundamental physics of shock compression.
However, in many ways the opposite has seemed to be
true, in that despite many attempts, a full understanding
of how such perfect single crystals react at the lattice level
to rapid uniaxial loading has remained surprisingly elusive,
with apparently differing results and interpretations being
put forward between gas gun experiments [5, 6] and those
performed on a shorter time-scale employing laser-plasma-
based drivers [7].

However, recent work employing nanosecond white-light
Laue diffraction to diagnose laser-driven shocks in sin-
gle crystal silicon shocked along the [100] axis has re-
confirmed that a complex elastic response, first observed
by Loveridge-Smith et al. [7], indeed occurs [8]. This work
showed that when silicon is shock-compressed to stresses in
the regime of a few 10’s of GPa on nanosecond timescales,
a leading double elastic-wave structure can form in com-
pression, which, upon breakout from a free surface, can
also result in a state of elastic tension.

In the work of Ref. [8], it was shown that the ob-
served experimental results were consistent with simula-
tions based on a simple Lagrangian code, which incorpo-
rated in an empirical manner a pressure dependent, but
kinetically inhibited (delayed) phase transition, with the
complex elastic behaviour being a result of the relatively
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large volume collapse associated with the change in phase.
However, within the work of [8], for the sake of brevity
no details of the code, and the assumptions that under-
pin it, were presented. Within the paper presented here
we rectify this situation, giving a full description of the
code, and a description of how states of strain within
the shocked sample are determined, allowing us to pre-
dict time-dependent X-ray diffraction patterns that can
be compared directly with experimental results.

Before describing the code in detail, we briefly recap
the main features of the particular experiment it is de-
signed to model. Within this experiment, 30µm thick
samples of [001] silicon, over-coated with a 15µm layer
of parylene-N ablator, were shock compressed by irradia-
tion with a 5 ns square pulse of 351 nm light at an irradi-
ance of 4× 1014 Wcm−2. At a time of 5 ns after the onset
of this drive pulse, a laser-plasma-generated, quasi-white-
light beam of X-rays (3-10 keV) were diffracted from the
rear undriven surface of the target, with the X-rays being
collimated such that they impinged on a central region
of 0.8mm diameter directly opposite the 5mm diameter
drive spot. The timing of the X-rays was such that they
were diffracted from as-yet unshocked material, as well as
the elastic compression waves that moved toward the rear
surface of the target, and also the regions of tension that
formed upon shock breakout. Further and more complete
details of the experimental set-up can be found in Ref. [8].

In order to model the sample response we utilise and
adapt a simple two-step algorithm to solve the elastic-
ity equations within a Lagrangian framework put forward
by Horie [9]. As we show below, this model allows us to
keep track of the time and space-dependent elastic strains
within the sample, and subsequently from them predict
X-ray diffraction patterns. This approach has recently
proven to be successful in modelling femtosecond diffrac-
tion patterns recorded from copper as it is shock com-
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pressed on picosecond timescales [10, 11].

The paper is laid out in the following manner. Firstly
the relevant phase transition in silicon is introduced, fol-
lowed by the formalism for the elastic code, including the
equations that govern the phase transition. We discuss the
necessary prerequisites for the code’s function, and the ex-
tent of fitting required. Finally, we show a comparison be-
tween the new code and molecular dynamics simulations,
before making concluding remarks.

2. Theory

2.1. Cubic diamond → β-Sn transition in silicon

We start by summarising the physics of the relevant
phase transition in silicon; the first order transition from
the ambient phase, which has a cubic diamond (cd) struc-
ture, to the higher pressure β-Sn structure, which occurs
at 13GPa on the hydrostat [1]. The crystal structures for
these two phases are shown in Fig. 1. It should be noted
that although we choose to refer to β-Sn in this paper, a
similar analysis would apply to the closely related Imma
phase, which is found to become stable between 15-32GPa.

(a) Cubic diamond (cd)

(b) Beta (β)

Figure 1: The two Si phases of interest. (a) The cubic di-
amond phase: a face-centered cubic lattice with a basis of
[(0,0,0),( 1

4
, 1
4
, 1
4
)]. (b) The β-Sn phase: a tetragonal lattice,

with the same basis as cd. We use values of a = 5.431 Å, b =
6.897 Å and c = 2.548 Å, found by minimising the energy of the
unit cell in MD, while holding the cell at zero external pressure.

Several features of this transition lead to complexity in
its modelling. Firstly, silicon exhibits a large volume col-
lapse of 21% between cd and β-Sn. Molecular dynamics

simulations suggest that, for compression of single crys-
tals along [001], this proceeds via a significant contrac-
tion along the compression direction, and an accompany-
ing transverse expansion. Moreover, previous studies sug-
gest a significant enthalpy barrier, and thus kinetic effects
must be considered [12, 8].

In the following sections we will develop the theory of
the Lagrangian elasticity (LE) code to allow for meaningful
simulation of such a system.

2.2. Lagrangian elasticity code formalism

The approach described here is based on the two step
integration of the elasticity equations described by Horie
[9, 10]. This method allows for solution of the 1d La-
grangian wave equations of Taylor [13] –

ρ0
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= 0, (1)
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where ρ0 is the initial density of the material in a La-
grangian element, u is its position, σn the normal stress,
and ǫn the normal true strain. Note the use of true, rather
than engineering strain, leads to an additional factor of
e−ǫn not present in Taylor’s description.

By utilising the equations of elasticity we can extend our
model, tracking both longitudinal and transverse proper-
ties, while retaining a 1d integration scheme. We modify
Taylor’s treatment by considering a relation based on the
full, strain dependent, compliance tensor, ǫi = Sij(ǭ)σj .
In order to allow for the strain dependence of the compli-
ance tensor, we define the components in terms of small
changes in stress and strain, which in the case of tetragonal
symmetry gives –
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(3)

where we have employed Voigt notation, and have defined
ǫ3 = ǫn and ǫ1 = ǫ2 = ǫt (with similar definitions for the
stress tensor), where subscripts n and t denote directions
normal to and transverse to the compression direction re-
spectively. We assume here that the stress and strain ten-
sors are diagonalised, and that the two transverse stresses,
and thus strains are equal. This leads to stress/strain re-
lations of the form –

∆ǫn = S33∆σn + 2S13∆σt, (4a)

∆ǫt = S13∆σn + S1112∆σt, (4b)
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where we have relabeled (S11 + S12) = S1112 to make
clear that the relations require only three independent elas-
tic constants. These equations are analogous to Eq. 4 in
Ref. [10]1, where only two elastic constants are needed to
describe a cubic system.

2.3. Phase transition

The formalism outlined above allows for integration of
stress in a purely elastic solid. Previous work has used an
additional model for plastic relaxation due to dislocation
motion, however, in this work we will instead integrate
a framework which allows us to describe relaxation via a
solid-solid phase transition. In particular, we will allow for
the existence of a mixed phase region, as required along a
shock Hugoniot.

While the underlying principles of this model will work
for an arbitrary number of phases it is sufficient here to
consider only the two phases introduced above (Section
2.1). We calculate all strains as true strains, such that the
extension ratio λ = l

l0
= e−ǫ.

The Lagrangian equations require the total longitudinal
strain in the material. In the case of a mixed phase region
we denote this as ǫmn . This will be a combination of the
extension ratios in the cd and β phases, weighted by the
relative fraction of the two phases, such that –

e−ǫm
n ≡ λm

n = fλβ
n + (1− f)λcd

n + χ (f) , (5)

where the superscripts describe the phase, and the phase
fraction, f where 0 < f < 1, is the fraction of the material
in the β-Sn phase. Additionally, we include a term, χ (f)
which represents strain within boundaries between phases;
material which is likely to be softer than can be described
by a pure two phase elastic model. It is assumed that this
boundary material fills a small volume fraction compared
to the two bulk phases. This allows us to state that the
fraction of material in the cubic diamond phase is (1− f).
In addition to the total longitudinal strain, we can write

the relationship between the transverse strains in the ma-
terial –

λm
t = 1 = fλβ

t + (1− f)λcd
t + χ (f) , (6)

and we have included explicitly that ǫmt = 0, as required
in the quasi-uniaxial experiments which this code was de-
veloped to simulate. Once again, we include the softer
material at grain boundaries.

1It should be noted that the original paper [10] contains a typo-
graphical error in these equations, and that they should read, in the
original nomenclature:
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Taking derivatives of equations 5 and 6 yields –

λm
n ∆ǫmn =fλβ

n∆ǫβn + (1− f)λcd
n ∆ǫcdn

+ (λcd
n − λβ

n − χ′ (f))∆f, (7a)

0 =fλβ
t ∆ǫβt + (1− f)λcd

t ∆ǫcdt

+ (λcd
t − λβ

t − χ′ (f))∆f. (7b)

The RHS of each of these equations is made up of three
terms, each with clear meanings. The first term is the frac-
tion of β phase with a given extension ratio, λβ , (due to
existing strain) multiplied by a change in strain ∆ǫβ . The
second term is the analogy for the cd phase. Finally the
third term describes the volume collapse (or expansion)
due to a small fraction, ∆f , of the material changing from
cd to β, with an associated dimension change (λcd

− λβ).
It is this final term which accounts for the first order na-
ture of the phase transition, and it will be seen to have
important implications for the resultant wave profiles.
Combining these equations with the Lagrangian equa-

tions (Eqs. 1 and 2), and our elasticity relations (Eq. 4) for
each material, we arrive at the following relations between
stress and strain in the material –

∆σn =
λm
n ∆ǫmn − (λcd

n − λβ
n − χ′ (f))∆f −A

B
(8)

∆σt = −
Λt,13∆σn + (λcd

t − λβ
t − χ′ (f))∆f

Λt,1112

(9)

where

A =−
2Λn,13(λ

cd
t − λβ

t − χ′ (f))∆f

Λt,1112

, (10)

B =Λn,33 −
2Λt,13Λn,13

Λt,1112

, (11)

Λd,ij =fλβ
dS

β
ij + (1− f)λcd

d Scd
ij (12)

with d = n, t and ij = 13, 33, 1112.
Note that we only calculate a single stress tensor for the

sample. We therefore assume that the two phases are in
the Reuss limit [14], that is the limit of iso-stress between
phases. While this may be a simplification, molecular dy-
namics simulations, described below, show no significant
departure from this limit, and its use is justified by the
quality of fit it affords between the two simulation meth-
ods.

Given the imposed boundary condition σn(z = 0, t), an
integration step proceeds as follows for each cell: if there is
any shear stress in the cell, the phase fraction is adjusted to
relieve this stress using Eq. 13; the change in longitudinal
strain is then calculated following the arguments laid out
by Horie [9]; the changes in normal and transverse stress
are calculated using Eqs. 4 and 7; finally the changes to
the individual phase’s strains are adjusted using Eq. 4. An
algorithmic representation of one simulation timestep is
shown in Appendix Appendix A.
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2.4. Calculating the elastic constants

The code described above requires as an input the strain
dependent elastic constants for each phase. Since we will
ultimately aim to benchmark the LE code against clas-
sical molecular dynamics (MD) we will take our elastic
constants from the empirical potential used for these MD
simulations.

The elastic constants, Sij , are calculated using the
LAMMPS code [15], the same code that we use to run MD
shock simulations. The interatomic interactions were mod-
elled using a Tersoff-like potential [16], as parameterised
by Erhart and Albe [17].

By initialising a unit cell of silicon atoms in a strained
cubic diamond crystal structure, then applying infinitesi-
mal strains to the unit cell and measuring the change in
the stress tensor, the relevant Sij can be calculated for any
position in the (ǫn, ǫt)-space.

The elastic constants were calculated at 0K. While
methods do exist to reliably calculate elastic constants
at finite temperature, such as those of Zhen and Chu
[18], as we are concerned with low (300K) temperatures,
a simpler approach is sufficient. Small, linear tempera-
ture dependencies were imposed on the elastic constants
to match the elastic wave speed from MD. The values that
result in good agreement with the elastic wave speed lie
between those calculated separately by Toupance [19] and
Schall et al. [20], and are on the order of 10MPaK−1.

2.5. Fitting parameters

The model above must be supplemented with empirical
models which govern rate of phase change, and softening
of boundaries. It is these models which provide free fitting
parameters to match the code to MD or experiment.

Given the significant enthalpy barrier of the cd→ β-Sn
transition, we must take into account kinetics. In order
to achieve this we allow for a ‘lag’ between the material
reaching the threshold pressure for phase transition, and
the onset of growth of the new phase. Once a cell’s pressure
has been above the transition pressure, σ∗, for at least this
lag time, τ , an increasing phase fraction is driven by the
non-zero shear stress, (σn − σt), according to –

∆f =

{

κ∆t(σn − σt), if σn > σ∗

0, otherwise
(13)

where κ is a constant which governs the rate of growth of
the phase, and ∆t is time-resolution of the simulation.

The phase boundary softening term takes a simple func-
tional form

χ (f) = µ sin2 (πf) (14)

This allows for description of grain boundary softening
with single free parameter, µ, whilst ensuring that the ef-
fect is only significant in mixed phase regions.
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Figure 2: Output from the LE code (solid lines) compared
with output from the MD simulations (dashed lines) at peak

longitudinal stress of 37.5GPa.

This leaves four fitting parameters, κ, σ∗, τ and µ, to
describe phase change kinetics and dynamics, and elastic-
ity at phase boundaries. The effect of each parameter on
wave profiles is distinct, and as such, solutions unique.
It should be noted that it would be possible in principle

to use more complex models (such as a stochastic or stress
dependent models for lag time).

3. Comparison of Lagrangian elastic code with MD

simulations

MD simulations were conducted using the LAMMPS
code with a sample size was 30x30x400 unit cells (2,881,800
atoms). The sample was thermalised at 300K, before a
fixed pressure (as opposed to the frequently used fixed ve-
locity) piston was applied at position z = 0, launching a
shock along the [001] crystallographic direction. As has
been observed in previous work [21], these simulations dis-
play a phase transition to Imma at 31GPa, with a signifi-
cant mixed phase region visible. As such, they provide an
ideal testbed for the LE formalism.
The corresponding LE code features 1000 Lagrangian

cells, and runs with temporal and spatial resolutions of
0.01 ps and 0.5 nm respectively. It is important to note
that we have determined that varying the temporal and
spatial resolutions of the simulation has no effect on the
phase change. The simulations run a factor of 104 times
faster than the corresponding MD.
We show a comparison of the two simulation methods in

Fig. 2, for a piston held at a fixed pressure of 37.5GPa. A
good agreement between the two stress profiles is seen, as
well as the longitudinal strain profiles. The slight discrep-
ancy between the final strains is due to melting of the ma-
terial in MD, which is not accounted for by the two-phase
model in the LE code. In Fig. 3, we show a comparison
between the two codes for multiple timesteps throughout
the simulations, which again show good agreement. We
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can see that for a lower pressure piston, here 32.5GPa,
the delay before the onset of the phase change is longer
than for the higher pressure piston shown in Fig. 2, re-
sulting in a longer high-strain elastic plateau (HSE). Also
shown is the wave profile that develops at longer time- and
length-scales, where the HSE is fully eroded by the fast-
moving partial release wave. It is this complete erosion
of the HSE, on the length-scales of gas gun experiments,
that accounts for the absence of the “anomalous elastic
response” in such experiments. The values of the fitting
parameters used in these simulations were: σ∗ = 23.5GPa,
κ =8×10−3 ps−1 GPa−1, µ = −0.042, and τ = 0.4 ps
(37.5GPa piston) and 6.0 ps (32.5GPa piston). We note
that the small value of µ implies that the boundaries be-
tween phases account for only a small fraction of the total
volume, as previously suggested.

We highlight the ability for the LE code to predict the
longitudinal and transverse strain in each of the phases.
These are measured relative to the dimensions of ambient
cubic diamond, and shown in Fig. 4. We can see that the
onset of the phase transition allows the initially uniaxially
strained cd phase to return to the hydrostat. It is this
calculation of the strains that allows X-ray diffraction from
the sample to be simulated, for further details see Fig. 3
in Ref. [8].

Also in Fig. 4, we compare the volume fraction, fV , of
the β-Sn fraction in the LE simulations with that calcu-
lated from the corresponding MD simulation. The volume
fraction is related to the phase fraction in the code, f , as
detailed in appendix Appendix B. The discrepancy in vol-
ume fraction between the two simulation methods, seen
immediately ahead of the piston in Fig. 4, is again due
to the onset of melting in the MD simulations, a process
which is not accounted for in the two-phase model intro-
duced here.

It should be noted that in the published MD simula-
tions [21], small rotations of each phase, about an axis

perpendicular to the drive direction, are observed in the
mixed-phase region, which further allow the region to ac-
commodate the high shear stress. These rotations can not
be taken into account in this 1D formulation.

Additionally, we note that in the same work, while a
change of basis is observed which is consistent with a
move towards Imma, the cell remains largely tetragonal,
with the two transverse cell dimensions measured to be the
same. We must be careful to separate the change in posi-
tion of the basis atoms from β-Sn to Imma, which is seen
in the MD, with the opportunity for Imma to move away
from tetragonal symmetry towards orthorhombic, which
is not seen. In any case, as the pressures in the MD sim-
ulations far exceed the experimental conditions at which
either structure is observed, these studies should not be
seen as an indication of phase stability at these pressures.

4. Conclusions

In this paper we present a full description of a new La-
grangian elastic (LE) code which aims to bridge the gap
between traditional hydrocodes and computationally ex-
pensive molecular dynamics (MD) simulations, and focus
on its ability to simulate solid-solid phase changes, and the
resulting mixed-phase regions.

We combine the 1D Lagrangian wave equations with
Hooke’s Law and an equation that governs the phase
change, to form a closed set of equations that can be in-
tegrated numerically to calculate the stresses and strains
in uniaxially compressed solid targets. We compare the
output of this LE code with that of MD simulations run
using the LAMMPS code, and find good agreement.

Finally, we illustrate the LE code’s intrinsic ability to
calculate and store the strains in each phase following the
phase change, a feature that traditional hydrocodes, using
multi-phase equations of state, lack. As one of the ma-
jor diagnostics in shock wave experiments is X-ray diffrac-
tion, and the diffraction pattern from a sample is directly
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related to the strains contained within, the ability to cal-
culate the individual phases’ strains is crucial to enable
simulated diffraction patterns to be created, which can
then be compared with experimental diffraction data.

The model is applicable to any polymorphic phase tran-
sition that conserves the number of unit cells transverse to
the shock. Also, the formalism could, in principle, accom-
modate multiple phase changes and mixed phase regions
consisting of more than two phases.

Acknowledgements

PGS would like to thank AWE for financial support.
JSW is grateful for support from EPSRC under grant
EP/J017256/1

References

[1] A Mujica. High-pressure phases of group-IV , III – V , and II –
VI compounds. Reviews of Modern Physics, 75(July), 2003.

[2] GJ Auckland. High-pressure phases of group IV and III-V
semiconductors. Reports on Progress in Physics, 64(4):483–
516, 2001. ISSN 0034-4885. doi:10.1088/0034-4885/64/4/202.
URL http://apps.webofknowledge.com/full{_}record.

do?product=UA{&}search{_}mode=CitingArticles{&}qid=

25{&}SID=W1iC7owbanWJugwxXoq{&}page=2{&}doc=19$\

delimiter"026E30F$nhttp://iopscience.iop.org/

0034-4885/64/4/202/pdf/0034-4885{_}64{_}4{_}202.pdf.
[3] M. N. Pavlovskii. Formation of metallic modification of Germa-

nium and Silicon under shock loading, 1967.
[4] W. H. Gust. Axial Yield Strengths and Two Successive

Phase Transition Stresses for Crystalline Silicon. Jour-
nal of Applied Physics, 42(5):1897, 1971. ISSN 00218979.
doi:10.1063/1.1660465. URL http://scitation.aip.org/

content/aip/journal/jap/42/5/10.1063/1.1660465.

[5] Stefan J. Turneaure and Y. M. Gupta. Inelastic deformation and
phase transformation of shock compressed silicon single crystals.
Applied Physics Letters, 91(20):201913, 2007. ISSN 00036951.
doi:10.1063/1.2814067. URL http://scitation.aip.org/

content/aip/journal/apl/91/20/10.1063/1.2814067.
[6] Stefan J. Turneaure and Y. M. Gupta. Real-time x-ray

diffraction at the impact surface of shocked crystals. Jour-
nal of Applied Physics, 111(2):026101, 2012. ISSN 00218979.
doi:10.1063/1.3674276. URL http://scitation.aip.org/

content/aip/journal/jap/111/2/10.1063/1.3674276.
[7] A. Loveridge-Smith, A. Allen, J. Belak, T. Boehly, A. Hauer,

B. Holian, D. Kalantar, G. Kyrala, R. Lee, P. Lomdahl, M. Mey-
ers, D. Paisley, S. Pollaine, B. Remington, D. Swift, S. Weber,
and J. Wark. Anomalous Elastic Response of Silicon to Uni-
axial Shock Compression on Nanosecond Time Scales. Physical
Review Letters, 86(11):2349–2352, Mar 2001. ISSN 0031-9007.
doi:10.1103/PhysRevLett.86.2349. URL http://link.aps.org/

doi/10.1103/PhysRevLett.86.2349.
[8] A. Higginbotham, P. G. Stubley, A. J. Comley, J. H. Eg-

gert, J. M. Foster, D. H. Kalantar, D. McGonegle, S. Patel,
L. J. Peacock, S. D. Rothman, R. F. Smith, M. J. Suggit,
and J. S. Wark. Inelastic response of silicon to shock com-
pression. Scientific Reports, 6(April):24211, 2016. ISSN 2045-
2322. doi:10.1038/srep24211. URL http://www.nature.com/

articles/srep24211.
[9] Y. Horie. Numerical Integration of Plane Elastic-Relaxing

Plastic Shock Waves by a Two-Step Method. Journal
of Applied Physics, 40(13):5368, 1969. ISSN 00218979.
doi:10.1063/1.1657396. URL http://link.aip.org/link/

?JAP/40/5368/1&Agg=doi.
[10] Justin S Wark, Andrew Higginbotham, Despina Milathianaki,

and Arianna Gleason. Combined hydrodynamic and diffrac-
tion simulations of femtosecond x-ray scattering from laser-
shocked crystals. Journal of Physics: Conference Series, 500
(15):152016, 2014. URL http://stacks.iop.org/1742-6596/

500/i=15/a=152016.
[11] D Milathianaki, S Boutet, G J Williams, A Higginbotham,

D Ratner, A E Gleason, M Messerschmidt, M M Seibert, D C
Swift, P Hering, J Robinson, W E White, and J S Wark. Fem-
tosecond visualization of lattice dynamics in shock-compressed
matter. Science (New York, N.Y.), 342(6155):220–3, Octo-
ber 2013. ISSN 1095-9203. doi:10.1126/science.1239566. URL
http://www.ncbi.nlm.nih.gov/pubmed/24115435.

[12] K. Gaál-Nagy, A. Bauer, P. Pavone, and D. Strauch. Ab
initio study of the enthalpy barriers of the high-pressure
phase transition from the cubic-diamond to the beta-tin
structure of silicon and germanium. Computational Materi-
als Science, 30(1-2 SPEC ISS.):1–7, 2004. ISSN 09270256.
doi:10.1016/j.commatsci.2004.01.002.

[13] John W. Taylor. Dislocation Dynamics and Dynamic Yield-
ing. Journal of Applied Physics, 36(10):3146, 1965. ISSN
00218979. doi:10.1063/1.1702940. URL http://link.aip.org/

link/JAPIAU/v36/i10/p3146/s1&Agg=doi.
[14] A Reuss. Berechnung der fließgrenze von mischkristallen
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Appendix A. The integration routine - algorith-

mic form

Given the imposed boundary condition σn(z = 0, t), an
integration step at timestep t = l proceeds as follows, as-
suming a total number of spatial cells N –

for j ← 1 to N − 1 :

∆f ←κ∆t(σn − σt),

∆ǫmn,j(t = l)←
R2

ρ0

l
∑

k=0

(σk
n,j+1 − 2σk

n,j + σk
n,j−1),

∆σn ←
λm
n ∆ǫmn − (λcd

n − λβ
n − χ′ (f))∆f −A

B
,

∆σt ←−
Λt,13∆σn + (λcd

t − λβ
t − χ′ (f))∆f

Λt,1112

,

∆ǫcd,βn ←Scd,β
33 ∆σn + 2Scd,β

13 ∆σt,

∆ǫcd,βt ←Scd,β
13 ∆σn + Scd,β

1112∆σt,

where cell number j is an implicit subscript, and timestep l
an implicit superscript, of all variables except where shown
explicitly in the second equation, which follows from the
arguments set out by Horie [9]. R = ∆t/∆x is the ratio of
the temporal and spatial resolutions of the simulation. All
parameters are then incremented, e.g. σn ← σn + ∆σn,
and the routine repeats for timestep t = l + 1.

Appendix B. Relating the volume fraction and the

phase fraction

As the phase fraction in the LE code is a description
of the fraction of phase in any one dimension, it must be
converted to a volume fraction for direct comparison with

MD. First we note that the average unit cell volume, V ,
is related to the unit cell volumes of the two phases, V cd

and V β , and the number fraction (the fraction of unit cells
in the sample which are β-Sn phase), fN , by the following
expression –

V = fNV β + (1− fN )V cd (B.1)

⇒ fN =
V − V cd

V β
− V cd

. (B.2)

As noted in the work of Mogni et al. [21], the volume
fraction, fV , is related to the number fraction, fN , by –

fV =
fNV β

fNV β + (1− fN )V cd
. (B.3)

This volume fraction is compared with that calculated
from MD in Fig. 4.
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