82 research outputs found

    Integration of Tmc1/2 into the mechanotransduction complex in zebrafish hair cells is regulated by Transmembrane O-methyltransferase (Tomt).

    Get PDF
    Transmembrane O-methyltransferase (TOMT / LRTOMT) is responsible for non-syndromic deafness DFNB63. However, the specific defects that lead to hearing loss have not been described. Using a zebrafish model of DFNB63, we show that the auditory and vestibular phenotypes are due to a lack of mechanotransduction (MET) in Tomt-deficient hair cells. GFP-tagged Tomt is enriched in the Golgi of hair cells, suggesting that Tomt might regulate the trafficking of other MET components to the hair bundle. We found that Tmc1/2 proteins are specifically excluded from the hair bundle in tomt mutants, whereas other MET complex proteins can still localize to the bundle. Furthermore, mouse TOMT and TMC1 can directly interact in HEK 293 cells, and this interaction is modulated by His183 in TOMT. Thus, we propose a model of MET complex assembly where Tomt and the Tmcs interact within the secretory pathway to traffic Tmc proteins to the hair bundle

    Loss of Baiap2l2 destabilizes the transducing stereocilia of cochlear hair cells and leads to deafness

    Get PDF
    The transduction of sound waves into electrical signals depends upon mechanosensitive stereociliary bundles that project from the apical surface of hair cells within the cochlea. The height and width of these actin‐based stereocilia is tightly regulated throughout life to establish and maintain their characteristic staircase‐like structure, which is essential for normal mechanoelectrical transduction. Here, we show that BAIAP2L2, a member of the I‐BAR protein family, is a newly identified hair bundle protein that is localized to the tips of the shorter rows of transducing stereocilia in mouse cochlear hair cells. BAIAP2L2 was detected by immunohistochemistry from postnatal day 2.5 (P2.5) throughout adulthood. In Baiap2l2 deficient mice, outer hair cells (OHCs), but not inner hair cells (IHCs), began to lose their third row of stereocilia and showed a reduction in the size of the mechanoelectrical transducer current from just after P9. Over the following post‐hearing weeks, the ordered staircase structure of the bundle progressively deteriorates, such that, by 8 months of age, both OHCs and IHCs of Baiap2l2 deficient mice have lost most of the second and third rows of stereocilia and become deaf. We also found that BAIAP2L2 interacts with other key stereociliary proteins involved in normal hair bundle morphogenesis, such as CDC42, RAC1, EPS8 and ESPNL. Furthermore, we show that BAIAP2L2 localization to the stereocilia tips depends on the motor protein MYO15A and its cargo EPS8. We propose that BAIAP2L2 is key to maintenance of the normal actin structure of the transducing stereocilia in mature mouse cochlear hair cells

    Evidence for geometry-dependent universal fluctuations of the Kardar-Parisi-Zhang interfaces in liquid-crystal turbulence

    Full text link
    We provide a comprehensive report on scale-invariant fluctuations of growing interfaces in liquid-crystal turbulence, for which we recently found evidence that they belong to the Kardar-Parisi-Zhang (KPZ) universality class for 1+1 dimensions [Phys. Rev. Lett. 104, 230601 (2010); Sci. Rep. 1, 34 (2011)]. Here we investigate both circular and flat interfaces and report their statistics in detail. First we demonstrate that their fluctuations show not only the KPZ scaling exponents but beyond: they asymptotically share even the precise forms of the distribution function and the spatial correlation function in common with solvable models of the KPZ class, demonstrating also an intimate relation to random matrix theory. We then determine other statistical properties for which no exact theoretical predictions were made, in particular the temporal correlation function and the persistence probabilities. Experimental results on finite-time effects and extreme-value statistics are also presented. Throughout the paper, emphasis is put on how the universal statistical properties depend on the global geometry of the interfaces, i.e., whether the interfaces are circular or flat. We thereby corroborate the powerful yet geometry-dependent universality of the KPZ class, which governs growing interfaces driven out of equilibrium.Comment: 31 pages, 21 figures, 1 table; references updated (v2,v3); Fig.19 updated & minor changes in text (v3); final version (v4); J. Stat. Phys. Online First (2012

    Induction of T Lymphocytes Specific for Bovine Viral Diarrhea Virus in Calves with Maternal Antibody

    Get PDF
    Passive antibody to bovine viral diarrhea virus (BVDV) acquired through colostrum intake may interfere with the development of a protective immune response by calves to this virus. The objective of this study was to determine if calves, with a high level of maternal antibody to bovine viral diarrhea virus (BVDV), develop CD4+, CD8+, or γδ T lymphocyte responses to BVDV in the absence of a measurable humoral immune response. Colostrum or milk replacer fed calves were challenged with virulent BVDV at 2-5 weeks of age and/or after maternal antibody had waned. Calves exposed to BVDV while passive antibody levels were high did not mount a measurable humoral immune response to BVDV. However, compared to nonexposed animals, these animals had CD4+, CD8+, and γδ T lymphocytes that were activated by BVDV after exposure to in vitro BVDV. The production of IFNγ by lymphocytes after in vitro BVDV exposure was also much greater in lymphocytes from calves exposed to BVDV in the presence of maternal antibody compared to the nonexposed calves. These data indicate that calves exposed to BVDV while maternal antibody levels are high can develop antigen specific CD4+, CD8+, and γδ T lymphocytes in the absence of an active antibody response. A manuscript presented separately demonstrates that the calves with T lymphocytes specific for BVDV in this study were also protected from virulent BVDV genotype 2 challenge after maternal antibody became undetectable

    Eco-evolutionary dynamics on deformable fitness landscapes

    No full text
    Conventional approaches to modelling ecological dynamics often do not include evolutionary changes in the genetic makeup of component species and, conversely, conventional approaches to modelling evolutionary changes in the genetic makeup of a population often do not include ecological dynamics. But recently there has been considerable interest in understanding the interaction of evolutionary and ecological dynamics as coupled processes. However, in the context of complex multi-species ecosytems, especially where ecological and evolutionary timescales are similar, it is difficult to identify general organising principles that help us understand the structure and behaviour of complex ecosystems. Here we introduce a simple abstraction of coevolutionary interactions in a multi-species ecosystem. We model non-trophic ecological interactions based on a continuous but low-dimensional trait/niche space, where the location of each species in trait space affects the overlap of its resource utilisation with that of other species. The local depletion of available resources creates, in effect, a deformable fitness landscape that governs how the evolution of one species affects the selective pressures on other species. This enables us to study the coevolution of ecological interactions in an intuitive and easily visualisable manner. We observe that this model can exhibit either of the two behavioural modes discussed in the literature; namely, evolutionary stasis or Red Queen dynamics, i.e., continued evolutionary change. We find that which of these modes is observed depends on the lag or latency between the movement of a species in trait space and its effect on available resources. Specifically, if ecological change is nearly instantaneous compared to evolutionary change, stasis results; but conversely, if evolutionary timescales are closer to ecological timescales, such that resource depletion is not instantaneous on evolutionary timescales, then Red Queen dynamics result. We also observe that in the stasis mode, the overall utilisation of resources by the ecosystem is relatively efficient, with diverse species utilising different niches, whereas in the Red Queen mode the organisation of the ecosystem is such that species tend to clump together competing for overlapping resources. These models thereby suggest some basic conditions that influence the organisation of inter-species interactions and the balance of individual and collective adaptation in ecosystems, and likewise they also suggest factors that might be useful in engineering artificial coevolution

    Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study

    Get PDF
    A41 Use of SMS texts for facilitating access to online alcohol interventions: a feasibility study In: Addiction Science & Clinical Practice 2017, 12(Suppl 1): A4
    corecore