137 research outputs found

    Anomaly Mediated Supersymmetry Breaking without R-Parity

    Get PDF
    We analyze the low energy features of a supersymmetric standard model where the anomaly--induced contributions to the soft parameters are dominant in a scenario with bilinear RR--parity violation. This class of models leads to mixings between the standard model particles and supersymmetric ones which change the low energy phenomenology and searches for supersymmetry. In addition, RR--parity violation interactions give rise to small neutrino masses which we show to be consistent with the present observations.Comment: 38 pages, 15 figures. For higher resolution figures go to http://www.fma.if.usp.br/~magro/figures

    Generation of entangled coherent states via cross phase modulation in a double electromagnetically induced transparency regime

    Full text link
    The generation of an entangled coherent state is one of the most important ingredients of quantum information processing using coherent states. Recently, numerous schemes to achieve this task have been proposed. In order to generate travelling-wave entangled coherent states, cross phase modulation, optimized by optical Kerr effect enhancement in a dense medium in an electromagnetically induced transparency (EIT) regime, seems to be very promising. In this scenario, we propose a fully quantized model of a double-EIT scheme recently proposed [D. Petrosyan and G. Kurizki, {\sl Phys. Rev. A} {\bf 65}, 33833 (2002)]: the quantization step is performed adopting a fully Hamiltonian approach. This allows us to write effective equations of motion for two interacting quantum fields of light that show how the dynamics of one field depends on the photon-number operator of the other. The preparation of a Schr\"odinger cat state, which is a superposition of two distinct coherent states, is briefly exposed. This is based on non-linear interaction via double-EIT of two light fields (initially prepared in coherent states) and on a detection step performed using a 50:5050:50 beam splitter and two photodetectors. In order to show the entanglement of a generated entangled coherent state, we suggest to measure the joint quadrature variance of the field. We show that the entangled coherent states satisfy the sufficient condition for entanglement based on quadrature variance measurement. We also show how robust our scheme is against a low detection efficiency of homodyne detectors.Comment: 15 pages, 9 figures; extensively revised version; added Section

    Producing the event ready two photon polarization EPR state with linear optics devices

    Full text link
    We propose a scheme to produce the maximally two photon polarization entangled state(EPR state) with single photon sources and the linear optics devices. In particular, our scheme requires the photon detectors only to distinguish the vacuum and non-vacuum Fock number states. A sophisticated photon detector distinguishing one or two photon states is unnecessary.Comment: Published in Phys. Rev. A alread

    Systematics, taxonomy and floristics of Brazilian Rubiaceae: an overview about the current status and future challenges

    Full text link

    Mean field effects on the scattered atoms in condensate collisions

    Full text link
    We consider the collision of two Bose Einstein condensates at supersonic velocities and focus on the halo of scattered atoms. This halo is the most important feature for experiments and is also an excellent testing ground for various theoretical approaches. In particular we find that the typical reduced Bogoliubov description, commonly used, is often not accurate in the region of parameters where experiments are performed. Surprisingly, besides the halo pair creation terms, one should take into account the evolving mean field of the remaining condensate and on-condensate pair creation. We present examples where the difference is clearly seen, and where the reduced description still holds.Comment: 6 pages, 4 figure
    corecore