27 research outputs found

    Crystal Structure And Low Temperature Physical Properties Of Ho2 Co Ga8 Intermetallic Antiferromagnet

    Get PDF
    We have synthesized single crystalline samples of Ho2 Co Ga8 intermetallic compound using a Ga-flux method. This compound crystallizes with a tetragonal structure, space group P4mmm, and lattice parameters a=4.219 (5) Å and c=10.99 (2) Å. This structure is a bilayer version of the HoCo Ga5 (1-1-5) which hosts a series of heavy-fermion superconductors and complex antiferromagnetic intermetallic systems. Measurements of magnetic susceptibility, heat capacity, and electrical resistivity revealed that Ho2 Co Ga8 is a metallic Curie-Weiss paramagnet at high temperature and presents an antiferromagnetic ordering below TN ∼5 K. The low temperature magnetic properties of this compound show the effects of tetragonal crystalline electrical field and the Ruderman-Kittel-Kasuya-Yosid interactions and the results presented here are compared with a broader description of the evolution of the low- T magnetic properties of structurally related series of rare-earth based tetragonal 2-1-8 and 1-1-5 compounds. © 2008 American Institute of Physics.1037Continentino, M.A., V. Löhneysen, H., Rosch, A., Vojta, M., Wölfle, P., (2005) Braz. J. Phys., 35, p. 197. , 0103-9733 10.1590/S0103-97332005000100018, ();, Rev. Mod. Phys. 79, 1015 (2007)Thompson, J.D., Movshovich, R., Fisk, Z., Bouquet, F., Curro, N.J., Fisher, R.A., Hammel, P.C., Sarrao, J.L., (2001) J. Magn. Magn. Mater., 226-230, p. 5. , and references thereinPagliuso, P.G., Movshovich, R., Bianchi, A.D., Nicklas, M., Moreno, N.O., Thompson, J.D., Hundley, M.F., Fisk, Z., (2002) Physica B, 312-313, p. 129Moreno, N.O., Hundley, M.F., Pagliuso, P.G., Movshovich, R., Nicklas, M., Thompson, J.D., Sarrao, J.L., Fisk, Z., (2002) Physica B, 312-313, p. 274Bianchi, A., Movshovich, R., Vekhter, I., Pagliuso, P.G., Sarrao, J.L., (2003) Phys. Rev. Lett., 91, p. 257001Sarrao, J.L., Morales, L.A., Thompson, J.D., Scott, B.L., Stewart, G.R., Wastin, F., Rebizant, J., Lander, G.H., (2002) Nature (London), 420, p. 297Bauer, E.D., Thompson, J.D., Sarrao, J.L., Morales, L.A., Wastin, F., Rebizant, J., Griveau, J.C., Stewart, G.R., (2004) Phys. Rev. Lett., 93, p. 147005Pagliuso, P.G., Garcia, D.J., Miranda, E., Granado, E., Lora-Serrano, R., Giles, C., Duque, J.G.S., Rettori, C., (2006) J. Appl. Phys., 99, pp. 08P703. , and references thereinGranado, E., Uchoa, B., Malachias, A., Lora-Serrano, R., Pagliuso, P.G., Westfahl Jr., H., (2006) Phys. Rev. B, 74, p. 214428Lora-Serrano, R., Giles, C., Granado, E., Garcia, D.J., Miranda, E., Agüero, O., Mendoņa Ferreira, L., Pagliuso, P.G., (2006) Phys. Rev. B, 74, p. 214404Hieu, N.V., Shishido, H., Nakashima, H., Sugiyama, K., Settai, R., Takeuchi, T., Matsuda, T.D., Nuki, Y., (2007) J. Magn. Magn. Mater., 310, p. 1721Hudis, J., Hu, R., Broholm, C.L., Mitrovic, V.F., Petrovic, C., (2006) J. Magn. Magn. Mater., 307, p. 301Yokaichiya, F., Giles, C., (2004) Physica B, 345, p. 82Yu, G., Yarmolyuk, Ya.P., Gladyshevskii, E.I., (1979) Kristallografiya, 24, p. 242Bao, W., Pagliuso, P.G., Sarrao, J.L., Thompson, J.D., Fisk, Z., (2001) Phys. Rev. B, 64, p. 020401. , (R)Adriano, C., Lora-Serrano, R., Giles, C., De Bergevin, F., Lang, J.C., Srajer, G., Mazzoli, C., Pagliuso, P.G., (2007) Phys. Rev. B, 76, p. 104515Amara, M., Gaĺra, R.M., Morin, P., Voiron, J., Burlet, P., (1995) J. Magn. Magn. Mater., 140-144, p. 1157Kletowski, Z., Slawinski, P., (1990) Solid State Commun., 76, p. 867Czopnik, A., (1995) Phys. Status Solidi A, 147, p. 3

    Crystal Structure And Physical Properties Of Gd3co 4sn13 Intermetallic Antiferromagnet

    Get PDF
    We have synthesized single crystalline samples of Gd3 Co4 Sn13 intermetallic compound using a Sn-flux method. This compound crystallizes with a cubic Yb3 Co4 Sn13 -type structure, space group Pm-3n, which has 40 atoms per unit cell. Measurements of the magnetic susceptibility, heat capacity, electrical resistivity, and electron spin resonance (ESR) revealed that Gd3 Co4 Sn13 is a metallic Curie-Weiss paramagnet at high temperature and presents an antiferromagnetic ordering below TN =14.5 K. In the paramagnetic state, a single Gd3+ ESR line with a nearly temperature independent g∼2.005 (2) is observed, and its linewidth follows a Korringa-like behavior as a function of temperature. From the Korringa rate (ΔHΔT∼4 OeK) and g -shift (Δg∼0.012) obtained from the ESR experiments combined with the magnetic susceptibility and specific heat data for Gd3 Co4 Sn13, we have extracted the exchange parameters between the Gd3+ local moments and the conduction-electrons (c-e) in this compound. This exchange parameter Jfs ≈10 meV was found to be c-e wave-vector independent and the electronic structure of Gd3 Co4 Sn13 has a single band character. © 2006 American Institute of Physics.998Remeika, J.P., (1980) Solid State Commun., 34, p. 923Remeika, J.P., (1982) Solid State Commun., 42, p. 97Sato, H., (1993) Physica B, 188, p. 630Hundley, M.F., (2002) Phys. Rev. B, 65, p. 024401Israel, C., (2005) Physica B, 359-361, p. 251Cornelius, A., Physica BPagliuso, P.G., (2001) Phys. Rev. B, 63, p. 054426Granado, E., (2004) Phys. Rev. B, 69, p. 144411Davidov, D., Maki, K., Orbach, R., Rettori, C., Chock, E.P., (1973) Solid State Commun., 12, p. 621Feher, G., Kip, A.F., (1955) Phys. Rev., 98, p. 337. , 0031-899X 10.1103/PhysRev.98.337Dyson, F.J., (1955) Phys. Rev., 98, p. 349Yosida, K., (1957) Phys. Rev., 106, p. 893Korringa, J., (1950) Physica (Amsterdam), 16, p. 601Rettori, C., Kim, H.M., Chock, E.P., Davidov, D., (1974) Phys. Rev. B, 10, p. 1826Abragam, A., Bleaney, B., (1970) EPR of Transition Ions, , Clarendon, OxfordMoriya, T., (1963) J. Phys. Soc. Jpn., 18, p. 516Narath, A., (1967) Phys. Rev., 163, p. 232Pagliuso, P.G., (1999) Phys. Rev. B, 60, p. 13515Bittar, E.M.

    Electron Spin Resonance Of Gd3 + In The Antiferromagnetic Heavy Fermion Cein3 And Its Reference Compound Lain3

    No full text
    We report temperature dependent electron spin resonance (ESR) experiments of Gd3 + in CeIn3 and in its reference compound LaIn3 taken in crushed single crystals. For LaIn3 a single Dysonian Gd3 + ESR line with a nearly temperature independent g ~ 2.020 (5) is observed, and its linewidth follows a Korringa-like behavior as a function of temperature. From the Korringa rate (Δ H / Δ T ~ 16 Oe / K) and g-shift (Δ g ~ 0.027) we have extracted the exchange parameter between the Gd3 + local moments and the conduction electrons (ce) in this compound. This exchange parameter Jfs ≈ 20 meV was found to be ce wave-vector independent. For CeIn3, the Gd3 + ESR spectra were found to be weakly temperature dependent and present partly resolved Gd3 + fine-structure. Interestingly, for CeIn3, the g-shift with respect to the g-value of Gd3 + in insulators is negative, in contrast to the positive g-shift found for Gd3 + in LaIn3. These results suggests different electronic structure at the Gd3 + site in the Kondo antiferromagnet host CeIn3. Possibly, Kondo effect may cause a decrease of the s-like conduction electron density of states at the Gd3 + site, giving arise to an exchange interaction only between the Gd3 + local moment and the Ce 4f electrons. © 2009 Elsevier B.V. All rights reserved.4041929952998Lawrence, J.M., (1979) Phys. Rev. B, 20, p. 3770Nasu, S., van Diepen, A.M., Newman, H.H., Craig, R.S., (1971) J. Phys. Chem. Solids, 32, p. 2773Kurosawa, Y., Umehara, I., Kikuchi, M., Nagai, N., Satoh, K., Onuki, Y., (1990) J. Phys. Soc. Japan, 5, p. 1545Lawrence, J.M., Shapiro, S.M., (1980) Phys. Rev. B, 22, p. 4379Mathur, N.D., Grosche, F.M., Julian, S.R., Walker, I.R., Freye, D.M., Haselwimmer, R.K.W., Lonzarich, G.G., (1998) Nature, 394, p. 39Thompson, J.D., (2001) J. Magn. Magn. Mater., 226-230, p. 5Pagliuso, P.G., (2002) Phys. B, 312-313, p. 129Welsh, L.B., Gambino, R.J., Toxen, A.M., (1971) J. Appl. Phys., 42, p. 1545Rettori, C., Oseroff, S.B., Rao, D., Pagliuso, P.G., Barberis, G.E., Sarrao, J., Fisk, Z., Hundley, M., (1997) Phys. Rev. B, 55, p. 1016Pires, M.A., Mendonça Ferreira, L., Duque, J.G.S., Urbano, R.R., Agüero, O., Torriani, I., Rettori, C., Pagliuso, P.G., (2006) J. Appl. Phys., 99, pp. 08J311Canfield, P.C., Fisk, Z., (1992) Philos. Mag. B, 65, p. 1117Pagliuso, P.G., (2002) Phys. Rev. B, 66, p. 054433Duque, J.G.S., (2007) Phys. Rev. B, 76, p. 125114. , and references thereinFeher, G., Kip, A.F., (1955) Phys. Rev., 98, p. 337Dyson, F.J., (1955) Phys. Rev., 98, p. 349Pake, G.E., Purcell, E.M., (1948) Phys. Rev., 74, p. 1184Yosida, K., (1957) Phys. Rev., 106, p. 893Korringa, J., (1950) Physica, 16, p. 601Davidov, D., Maki, K., Orbach, R., Rettori, C., Chock, E.P., (1973) Solid State Comm., 12, p. 621Davidov, D., Orbach, R., Rettori, C., Shaltiel, D., Tao, L.J., Ricks, B., (1971) Phys. Lett., 35 A, p. 339Rettori, C., Kim, H.M., Chock, E.P., Davidov, D., (1974) Phys. Rev. B, 10, p. 1826Abragam, A., Bleaney, B., (1970) EPR of Transition Ions, , Clarendon Press, Oxford p. 335Moriya, T., (1963) J. Phys. Soc. Japan, 18, p. 516Narath, A., (1967) Phys. Rev., 163, p. 232Urbano, R.R., (2007) Phys. Rev. B, 75, p. 045107Pagliuso, P.G., Rettori, C., Oseroff, S.B., Canfield, P.C., Baggio-Saitovitch, E.M., Sanchez, D., (1998) Phys. Rev. B, 57, p. 3668Pinto, J.W.M., Frota, H.O., (2001) Phys. Rev. B, 64, p. 092404Pagliuso, P.G., Rettori, C., Sarrao, J.L., Cornelius, A., Hundley, M.F., Fisk, Z., Oseroff, S.B., (1999) Phys. Rev. B, 60, p. 1351

    Selective distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of human brain.

    No full text
    In vertebrates, the interconversion of lactate and pyruvate is catalyzed by the enzyme lactate dehydrogenase. Two distinct subunits combine to form the five tetrameric isoenzymes of lactate dehydrogenase. The LDH-5 subunit (muscle type) has higher maximal velocity (Vmax) and is present in glycolytic tissues, favoring the formation of lactate from pyruvate. The LDH-1 subunit (heart type) is inhibited by pyruvate and therefore preferentially drives the reaction toward the production of pyruvate. There is mounting evidence indicating that during activation the brain resorts to the transient glycolytic processing of glucose. Indeed, transient lactate formation during physiological stimulation has been shown by 1H-magnetic resonance spectroscopy. However, since whole-brain arteriovenous studies under basal conditions indicate a virtually complete oxidation of glucose, the vast proportion of the lactate transiently formed during activation is likely to be oxidized. These in vivo data suggest that lactate may be formed in certain cells and oxidized in others. We therefore set out to determine whether the two isoforms of lactate dehydrogenase are localized to selective cell types in the human brain. We report here the production and characterization of two rat antisera, specific for the LDH-5 and LDH-1 subunits of lactate dehydrogenase, respectively. Immunohistochemical, immunodot, and western-blot analyses show that these antisera specifically recognize their homologous antigens. Immunohistochemistry on 10 control cases demonstrated a differential cellular distribution between both subunits in the hippocampus and occipital cortex: neurons are exclusively stained with the anti-LDH1 subunit while astrocytes are stained by both antibodies. These observations support the notion of a regulated lactate flux between astrocytes and neurons

    A Study Of The Mechanism Of Suppression Of Superconductivity By Pr 3+ Substitution For Ba2+ In The Ybco(123) System

    No full text
    We present a systematic structural, transport, iodometric, susceptibility and x-ray photoemission study of the Y (Ba1-xPrx) 2Cu3O7-δ system for x ≤ 0.00,0.025,0.05,0.075 and 0.10 with Pr3+ (smaller in ionic radii but higher in valence than Ba2+) substituted at the Ba site. It is successfully shown that a higher valence cation can be substituted for a lower valence one. The rate of the Tc depression in these is observed to be much higher than that in the case when Pr3+ is substituted at the Y3+ site. This is explained as being due to a composite effect of the depletion of itinerant holes due to the progressive depletion of the oxygen content in the samples, the Pr 4f-O 2p hybridization and change in the in-plane coherence length (ξab) resulting from change in the in-plane atomic distances, using Ginzburg-Landau theory. © IOP Publishing Ltd.1932Wu, M.K., Ashburn, J.R., Torng, C.J., Meng, P.H., Geo, L., Huang, Z.J., Wang, Y.Q., Chu, C.W., (1987) Phys. Rev. Lett., 58 (9), p. 908Yang, K.N., Lee, B.W., Maple, M.B., Laderman, S.S., (1988) J. Appl. Phys., 46 (3), p. 229Staub, U., Antonio, M.R., Xue, J.S., Soderholm, L., Loong, C.K., Guillaume, M., Furrer, A., (1994) Bull. Am. Phys. Soc., 39, p. 67Fincher, C.R., Blanchet, G.B., (1991) Phys. Rev. Lett., 67 (20), p. 2902Cao, G., Kennedy, R.J., O'Reilly, J.W., Crow, J.E., Pernambuco-Wise, P., Ting, S.T., (1993) Physica, 186-188, p. 1022Soderholm, L., Zhang, K., Hink, D.G., Beno, M.A., Jorgensen, J.D., Segre, C.U., Schuller, I.K., (1987) Nature, 328 (6131), p. 604Dalicaouch, Y., Torikachvili, M.S., Early, E.A., Lee, B.W., Seaman, C.L., Yang, K.N., Zhou, H., Maple, M.B., (1988) Solid State Commun., 65 (9), p. 1001Tang, X.X., Manthiram, A., Goodenough, J.B., (1989) Physica, 161 (5-6), p. 574Peng, J.L., Klavins, P., Shelton, R.N., Radousky, H.B., Hahn, P.A., Bernardez, L., (1989) Phys. Rev., 40 (7), p. 4517Zou, Z., Oka, K., Ito, T., Nishihara, Y., (1997) Japan. J. Appl. Phys., 36 (PART 2), p. 18Zou, Z., Oka, K., Ito, T., Nishihara, Y., (1997) Physica, 282-287, p. 481Ye, J., Zou, Z., Matsushita, A., Oka, K., Nishihara, Y., Matsumoto, T., (1998) Phys. Rev., 58 (2), p. 619Blackstead, H.A., Dow, J.D., (2000) Solid State Commun., 115 (3), p. 137Blackstead, H.A., Dow, J.D., (1995) Phys. Rev., 51 (17), p. 11830Zhang, L., Zhang, W., Zhang, H., (2001) Physica, 364-365, p. 420Guo, G.Y., Temmerman, W.M., (1990) Phys. Rev., 41 (10), p. 6372Fehrenbacher, R., Rice, T.M., (1993) Phys. Rev., 70, p. 3471Merz, M., Al, E., (1999) Phys. Rev., 60 (13), p. 9317Merz, M., Al, E., (1997) Phys. Rev., 55 (14), p. 9160Katuwal, T., Sandu, V., Almasan, C.C., Taylor, B.J., Maple, M.B., (2006) Phys. Rev., 73 (14), p. 144510Katuwal, T., Sandu, V., Almasan, C.C., Taylor, B.J., Maple, M.B., (2005) Phys. Rev., 72 (17), p. 174501Chen, M., Liu, S.J., Lee, J.M., Lin, J.-Y., Gou, Y.S., Yang, H.D., (2004) Physica, 408, p. 818Sun, X.F., Tsukada, I., Suzuki, T., Komiya, S., Ando, Y., (2005) Phys. Rev., 72 (10), p. 104501Lian, G.J., Wang, X., Xiong, G.C., Gao, J., (2005) Phys. Rev., 72, p. 024503Chen, J.M., Liu, S.J., Chang, C.F., Lin, J.-Y., Gou, Y.S., Yang, H.D., (2003) Phys. Rev., 67, p. 014502Bäckström, J., Budelmann, D., Rauer, R., Rübhausen, M., Rodríguez, H., Adrian, H., (2004) Phys. Rev., 70 (17), p. 174502Sandu, V., Cimpoiasu, E., Li, S., Maple, M.B., Almasan, C.C., (2004) Physica, 408, p. 713Udomkan, N., Winotai, P., Suryanarayanan, R., Charoenthai, N., (2005) Supercond. Sci. Technol., 18 (10), p. 1294Boothroyd, A.T., Andersen, N.H., Larsen, B.H., Zhokhov, A.A., Frost, C.D., Adroja, D.T., (2005) Phys. Rev., 71, p. 094514Shi, L., Huang, Y., Jia, Y., Liu, X., Zhou, G., Zhang, Y., (1998) J. Phys.: Condens. Matter, 10 (31), p. 7015Ferreira, L.M., Pureur, P., Borges, H.A., Lejay, P., (2004) Phys. Rev., 69 (21), p. 212505Khosroabadi, H., Mossalla, B., Akhavan, M., (2004) Phys. Rev., 70 (13), p. 134509Khalid, M., Sekhar, B.R., Srivastava, P., Kumari, K., Garg, K.B., (1997) Phys. Status Solidi, 162 (2), p. 643Kebede, A., Al, E., (1989) Phys. Rev., 40 (7), p. 4453Reyes, A.P., McLaughlin, D.E., Takigawa, M., Hammel, P.C., Heffner, R.H., Thompson, J.D., Crow, J.E., Schwegler, J., (1990) Phys. Rev., 42 (4), p. 2688Harada, T., Yoshida, K., (2004) Physica, 391 (1), p. 1Chen, J.M., Liu, S.J., Lee, J.M., Hong, I.P., Lin, J.-Y., Gou, Y.S., Yang, H.D., (2003) J. Chem. Phys. Lett., 370 (1-2), p. 180Singhal, R.K., Chandra, U., Garg, K.B., (1993) J. Magn. Magn. Mater., 123 (3), p. 311Singhal, R.K., Rao, K.V.R., Chandra, U., Jain, D.C., Garg, K.B., (1990) Int. J. Mod. Phys., 4 (9), p. 1567Singhal, R.K., Chandra, U., Garg, K.B., Chauhan, H.S., Jain, D.C., Jayaraman, A., (1990) Physica, 158 (1-3), p. 593Singhal, R.K., Chandra, U., Garg, K.B., Chauhan, H.S., Jain, D.C., Jayaraman, A., (1990) Phys. Scr., 41 (2), p. 284Ransley, J.H.T., McBrien, P.F., Burnell, G., Tarte, E.J., Evetts, J.E., Schulz, R.R., Schneider, C.W., Mannhart, J., (2004) Phys. Rev., 70 (10), p. 104502Harris, D.C., Hewston, T.A., (1987) J. Solid State Chem., 69 (1), p. 182Gogia, B., Tarey, R.D., Pandya, D.K., Kashyap, S.C., Chopra, K.L., Gupta, A.K., Joshi, S.K., Rao, C.N.R., (1988) Proc. Srinagar Workshop on High Temperature Superconductivity, pp. 267-271Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., (1987) Phys. Rev., 36 (7), p. 3608Liu, R., Olson, C.G., Yang, A.B., Gu, C., Lynch, D.W., Arko, A.J., List, R.S., Vandervoort, K., (1989) Phys. Rev., 40 (4), p. 2650List, R.S., Arko, A.J., Fisk, Z., Cheong, S.-W., Conradson, S.D., Thompson, J.D., Pierce, C.B., Bartlett, R.J., (1988) Phys. Rev., 38 (16), p. 11966Fernandes, A.A.R., Santamaria, J., Bud'Ko, S.L., Nakamura, O., Guimpel, J., Schuller, I.K., (1991) Phys. Rev., 44 (14), p. 7601Lu, T.R., Chen, T.M., (1997) Physica, 276 (1-2), p. 75Licci, F., Gauzzi, A., Marezio, M., Radaelli, G.P., Masini, R., Chaillout-Bougerol, C., (1998) Phys. Rev., 58 (22), p. 15208Kapitulnik, A., Beasley, M.R., Castellani, C., Di Castro, C., (1988) Phys. Rev., 37 (1), p. 537Ravel, B., Newville, M., Cross, J.O., Boudlin, C.E., (1995) Physica, 208-209, p. 145Srivastava, P., Sekhar, B.R., Saini, N.L., Sharma, S.K., Garg, K.B., Mercey, B., Ph, L., Murray, H., (1993) Solid State Commun., 88 (2), p. 105Srivastava, P., Sekhar, B.R., Saini, N.L., Garg, K.B., (1993) Indian J. Phys., 67, p. 11Cava, R.J., Batlogg, B., Chen, C.H., Rietman, E.A., Zahurak, S.M., Werder, D., (1987) Phys. Rev., 36 (10), p. 5719Jorgensen, J.D., Veal, B.W., Kwok, W.K., Crabtree, G.W., Umezawa, A., Nowicki, L.J., Paulikas, A.P., (1987) Phys. Rev., 36 (10), p. 5731Dai, Y., Manthiram, A., Campion, A., Goodenough, J.B., (1988) Phys. Rev., 38 (7), p. 5091Ando, Y., Lavrov, A.N., Segava, K., (1999) Phys. Rev. Lett., 83 (14), p. 2813Segawa, K., Ando, (2001) Phys. Rev. Lett., 86 (21), p. 490

    Deep brain stimulation: a new treatment for hypertension?

    No full text
    We report a 61-year-old hypertensive man who underwent deep brain stimulation of the periventricular/periaqueductal grey area for the relief of chronic neuropathic pain affecting his oral cavity and soft palate. During intraoperative stimulation, we were able to modulate his blood pressure up or down, depending on electrode location. This is the first evidence that hypertension could be effectively treated with electrical stimulation of the midbrain

    Competing Orders In Underdoped (ba1-xkx)fe 2as2

    No full text
    We report 75As Nuclear Magnetic Resonance (NMR) measurements in the high-Tc superconductor (Ba1-xKx)Fe 2As2 in the underdoped regime. A structural transition at Ts ≃110 K is followed by an antiferromagnetic (AFM) order at TN ≃102 K for our x = 0.16 single crystal [1]. Superconductivity (SC) also appears at Tc ≃20 K. We find that the ordered Fe moment (S) is reduced upon hole-doping. Both spectrum analysis and relaxation measurements indicate that pinned vortices are present below Tc and SC is coexisting with AFM fluctuations. © Published under licence by IOP Publishing Ltd.2731Urbano R R, Green E L, Moulton W G et al 2010 arXiv:1005.3718v1 [cond-mat.supr-con]Kamihara, Y., Watanabe, T., Hirano, M., Hosono, H., (2008) J. Am. Chem. Soc., 130 (11), pp. 3296-3297Rotter, M., Tegel, M., Johrendt, D., (2008) Phys. Rev. Lett., 101 (10), p. 107006Ni, N., Tillman, M.E., Yan, J.-Q., (2008) Phys. Rev., 78 (21), p. 214515Pratt, D.K., Tian, W., Kreyssig, A., (2009) Phys. Rev. Lett., 103 (8), p. 087001Lester, C., Chu, J.-H., Analytis, J.G., (2009) Phys. Rev., 79 (14), p. 144523Johnston D C 2010 arXiv:1005.4392v1 [cond-mat.supr-con]Park, J.T., Inosov, D.S., Niedermayer, Ch., (2009) Phys. Rev. Lett., 102 (11), p. 117006Kitagawa, K., Katayama, N., Ohgushi, K., (2008) J. Phys. Soc. Jpn, 77 (11), p. 114709Julien, M.H., Mayaffre, H., Horvatic, M., (2009) Europhys. Lett., 87 (3), p. 37001Mukuda, H., Terasaki, N., Yashima, M., (2009) Physica, 469 (9-12), p. 559Fukazawa, H., Yamazaki, T., Kondo, K., (2009) J. Phys. Soc. Japan., 78 (3), p. 033704Nakai, Y., Ishida, K., Kamihara, Y., Hirano, M., Hosono, H., (2008) J. Phys. Soc. Japan., 78, p. 033704Moriya, T., (1985) Spin Fluctuations in Itinerant Electron Magnetism, , Berlin, Springer-VerlagBachman, H.N., Reyes, A.P., Mitrovic, V.F., (1998) Phys. Rev. Lett., 80 (8), p. 172

    Deep brain stimulation: a new treatment for hypertension?

    Get PDF
    We report a 61-year-old hypertensive man who underwent deep brain stimulation of the periventricular/periaqueductal grey area for the relief of chronic neuropathic pain affecting his oral cavity and soft palate. During intraoperative stimulation, we were able to modulate his blood pressure up or down, depending on electrode location. This is the first evidence that hypertension could be effectively treated with electrical stimulation of the midbrain

    Structural Distortion And Magnetic Order In The Intermetallic Eu 3ir4sn13 Compound

    No full text
    In this work, we have investigated the low temperature structural distortion and magnetic properties of the Eu3Ir4Sn 13 Remeika cubic phase compound using X-ray powder diffraction (XRD), X-ray resonant magnetic scattering (XRMS) and neutron diffraction. X-ray scattering revealed that the peak observed in electrical resistivity and heat capacity measurements is related to a structural distortion at T*=57.1 K. This crystallographic distortion characterized by the arising of a propagation vector q=(0,(1/2),(1/2)) is due to a displacement of the Sn ions at the Sn1Sn212 polyhedron. In addition, the neutron diffraction experiments performed on a single crystal of Eu3Ir4Sn13 exhibit an antiferromagnetic coupling below TN=10.1 K where we observe a commensurate magnetic propagation vector τ=(0,(1/2),(1/2)) identical to the one observed for the structural distortion. © 1965-2012 IEEE.49846524655Remeika, J., Espinosa, G., Cooper, A., Barz, H., Rowell, J., McWhan, D., Vandenberg, J., Woolf, L., A new family of ternary intermetallic superconducting/magnetic stannides (1980) Solid State Commun., 34 (12), pp. 923-926Israel, C., Bittar, E., Agüero, O., Urbano, R., Rettori, C., Torriani, I., Pagliuso, P., Borges, H., Crystal structure and low-temperature physical properties of R Sn ( R Ce LaIr Co) intermetallics (2005) Physica B: Condensed Matter, 359, pp. 251-253Sato, H., Fukuhara, T., Iwakawa, S., Aoki, Y., Sakamoto, I., Takayanagi, S., Wada, N., Magnetic and transport properties of Ir Sn (1993) Physica B: Condensed Matter, 186, pp. 630-632Takayanagi, S., Sato, H., Fukuhara, T., Wada, N., Two magnetic transitions in Ce Ir Sn (1994) Physica B: Condensed Matter, 199, pp. 49-51Nagoshi, C., Sugawara, H., Aoki, Y., Sakai, S., Kohgi, M., On-Imaru, H.S.T., Sakakibara, T., Anomalous phase transitions in the heavy fermion compound Ce Ir Sn (1986) Physica B, 136 B, pp. 432-435Ferreira, L.M., Bittar, E., Pires, M., Urbano, R., Agüero, O., Torriani, I., Rettori, C., Baggio-Saitovich, E., Antiferromagnetic ordering of divalent Eu in Eu Ir Sn intermetallic compound (2006) Physica B: Condensed Matter, 384 (1-2), pp. 332-335Nagoshi, C., Yamamoto, R., Kuwahara, K., Sagayama, H., Kawana, D., Kohgi, M., Sugawara, H., Arai, M., Magnetic and transport properties of Ir Sn with unique crystal structure (2006) J. Physical Soc. Japan, 75 (4), p. 044710. , AprAoki, Y., Fukuhara, T., Sugawara, H., Sato, H., Valence of Eu ion in Eu Ir Sn at low temperatures (1996) J. Physical Soc. Japan, 65, pp. 1005-1009Pires, M.A., Ferreira, L.M., Duque, J.G.S., Urbano, R.R., Aguero, O., Torriani, I., Rettori, C., Pagliuso, P.G., Crystal structure and physical properties of Eu ion in Sn intermetallic antiferromagnet (2006) J. Appl. Phys., 99, pp. 08J311Hodeau, J., Marezio, M., Remeika, J., Chen, C., Structural distortion in the primitive cubic phase of the superconducting/magnetic ternary rare-earth rhodium stannides (1982) Solid State Commun., 42 (2), pp. 97-102Agüero, O., (2007) Estudo Estrutural de Sistemas Nanoestruturados Com-postos Intermetálicos e Cobaltitas, , Ph.D. dissertation, Unicamp, Campinas, BrazilGiles, C., Yokaichiya, F., Kycia, S., Sampaio, L., Ardiles-Saravia, D., Franco, M., Neuenschwander, R., High-resolution x-ray diffraction beamline at the LNLS for the study of charge, orbital and magnetic structures (2003) J. Synchrotron Rad., 10, pp. 430-434Hill, J.P., McMorrow, D.F., Resonant exchange scattering: Polarization dependence and correlation function (1996) Acta Crystallographica Sec. A, 52 (2), pp. 236-244. , MarMiraglia, S., Hodeau, J.L., Marezio, M., Laviron, C., Ghedira, M., Espinosa, G.P., Nature of the structural distortion and of the chemical bondingin Sn (Yb, Ca, Sr, and Th) (1986) J. Solid State Chemistry, 63, pp. 358-368Hodeau, J., Chenavas, J., Marezio, M., Remeika, J., The crystal structure of Sn, a new ternary superconducting stan-nide (1980) Solid State Commun., 36 (10), pp. 839-845Beaurepaire, E., Bulou, H., Scheurer, F., Kappler, J.-P., (2010) Magnetism and Synchrotron Radiation: New Trends Ser. Proceedings in Physics, , Berlin, Germany: SpringerBordet, P., Hodeau, J.L., Wolfers, P., Miraglia, S., Benoit, A., Marezio, M., Remeika, J.P., Magnetic structures of Sn and Sn Sn (2005) Physica B, B, pp. 359-361Blundell, S., (2001) Magnetism in Condensed Matter, , New York, NY, USA: Oxford Univ. PressBalakrishnan, G., Nagarajan, R., Paghdar, S.K., Gupta, L.C., Vijayaraghavan, R., Eu and Sn Mossbauer studies in the Sn (1990) Physica B: Phys. Condensed Matter, 165, pp. 227-22

    Electrical Resistivity Under Extreme Conditions In The Ce 3ir4sn13 Heavy Fermion Compound

    No full text
    We have performed measurements of temperature dependent electrical resistivity ρ(T) under pressures up to 27 kbar and down to 0.1 K on single crystals of the Ce3Ir4Sn13 heavy fermion compound. At ambient pressure (P=0) we have identified in the ρ(T) data interesting features associated with the presence of crystalline field effects, magnetic correlations, Kondo single impurity scattering and, possibly, a low temperature structural phase transition. All these features were mapped as a function of pressure which allowed us to construct a pressure-temperature phase diagram with these temperature scales. We have also carried out measurements of ρ(T) as a function of magnetic fields up to H=8 T and the important temperature scales in ρ(T) were followed with field. Enlightened also by temperature dependent specific heat experiments we discuss the possible microscopic origins of the features found in our ρ(T) data. © 2013 Elsevier Ltd.177132135Remeika, J.P., Espinosa, G.P., Cooper, A.S., Barz, H., Rowell, J.M., McWhan, D.B., Vandenberg, J.M., Thomlinson, W., (1980) Solid State Commun., 34, p. 923Hodeau, J.L., Chenavas, J., Marezio, M., Remeika, J.P., (1980) Solid State Commun., 36, p. 839Agüero, O., (2007), Ph.D. thesis, Universidade Estadual de Campinas, Campinas, SP, BrazilZhong, G., Lei, X., Mao, J., (2009) Phys. Rev. B, 79, p. 094424Sato, H., Fukuhara, T., Iwasaki, S., Aoki, Y., Sakamoto, I., Takayanagi, S., Wada, N., (1993) Physica B, 186-188, p. 630Prires, M.A., Mendonça Ferreira, L., Duque, J.G.S., Urbano, R.R., Agüero, O., Torriani, I., Rettori, C., Pagliuso, P.G., (2006) J. Appl. Phys., 99, pp. 08J311Mendonça Ferreira, L., Bittar, E.M., Pires, M.A., Urbano, R.R., Agüero, O., Torriani, I., Rettori, C., Baggio-Saitovich, E., (2006) Physica B, 384, p. 332Mardegan, J.R.L., Aliouane, N., Coelho, L.N., Agüero, O., Bittar, E.M., Lang, J.C., Pagliuso, P.G., Giles, C., (2013) IEEE Trans. Magn., 49, p. 4652Hundley, M.F., Sarrao, J.L., Thompson, J.D., Movshovich, R., Jaime, M., Petrovic, C., Fisk, Z., (2002) Phys. Rev. B, 65, p. 024401Ghosh, K., Ramakrishnan, S., Chandra, G., (1993) Phys. Rev. B, 48, p. 10435Klintberg, L.E., Goh, S.K., Alireza, P.L., Saines, P.J., Tompsett, D.A., Logg, P.W., Yang, J., Grosche, F.M., (2012) Phys. Rev. Lett., 109, p. 237008Israel, C., Bittar, E.M., Aguero, O.E., Urbano, R.R., Rettori, C., Torriani, I., Pagliuso, P.G., Borges, H.A., (2005) Physica B, 359-361, p. 251Thomas, E.L., Lee, H.-O., Bankston, A.N., Maquilon, S., Klavins, P., Maldovan, M., Young, D.P., Chan, J.Y., (2006) J. Solid State Chem., 179, p. 1642Köhler, U., Pikul, A., Oeschler, N., Westerkamp, T., Strydom, A.M., Steglich, F., (2007) J. Phys. Condens. Matter, 19, p. 386207Ślebarski, A., White, B.D., Fijałkowski, M., Goraus, J., Hamlin, J.J., Maple, M.B., (2012) Phys. Rev. B, 86, p. 205113Takayanagi, S., Sato, H., Fukuhara, T., Wada, N., (1994) Physica B, 199-200, p. 49Nagoshi, C., Sugawara, H., Aoki, Y., Sakai, S., Kohgi, M., Sato, H., Onimaru, T., Sakakibara, T., (2005) Physica B, 359-361, p. 248Canfield, P.C., Fisk, Z., (1992) Philos. Mag. B, 65, p. 1117Yang, C.P., Chen, Y.H., Wang, H., Nagoshi, C., Kohgi, M., Sato, H., (2008) Appl. Phys. Lett., 92, p. 092504Bittar, E.M., (2006), M.Sc. thesis, Universidade Estadual de Campinas, Campinas, SP, BrazilCornut, D., Coqblin, B., (1972) Phys. Rev. B, 5, p. 4541Stewart, G.R., (1984) Rev. Mod. Phys., 56, p. 755Continentino, M.A., (2005) Braz. J. Phys., 35, p. 197Löhneysen, H.V., Rosch, A., Vojta, M., Wölfle, P., (2007) Rev. Mod. Phys., 79, p. 1015Christianson, A.D., Bauer, E.D., Lawrence, J.M., Riseborough, P.S., Moreno, N.O., Pagliuso, P.G., Sarrao, J.L., McQueeney, R.J., (2004) Phys. Rev. B, 70, p. 134505Collave, J.R., in pressChristianson, A.D., Goremychkin, E.A., Gardner, J.S., Kang, H.J., Chung, J.-H., Manuel, P., Thompson, J.D., Lawrence, J.M., (2008) Physica B, 403, p. 909Cornelius, A.L., Christianson, A.D., Lawrence, J.L., Fritsch, V., Bauer, E.D., Sarrao, J.L., Thompson, J.D., Pagliuso, P.G., (2006) Physica B, 378-380, p. 113Pagliuso, P.G., Moreno, N.O., Curro, N.J., Thompson, J.D., Hundley, M.F., Sarrao, J.L., Fisk, Z., Cornelius, A.L., (2002) Phys. Rev. B, 66, p. 054433Light, B.E., Kumar, R.S., Cornelius, A.L., Pagliuso, P.G., Sarrao, J.L., (2004) Phys. Rev. B, 69, p. 02441
    corecore