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Abstract 

The damping of multi-modal oscillations through 
supplementary control of multiple HVDC systems is 
presented. The resulting controller produced is a fixed low-

order decentralised controller, capable of providing adequate 
damping towards the low-frequency power oscillations. 
Linear analysis is substantiated with non-linear simulations in 
DIgSILENT PowerFactory with detailed representation of 
HVDC links.  

1 Introduction 

With major reinforcements worth approximately £4.7 billion 
by 2020 to accommodate 45 GWs of new generation, of 
which 34 GWs anticipated from wind to meet EU target of 
‘15% energy from renewables’ [1], the application of HVDC 
transmission technologies within the existing GB network as 
a means of enhancing the transfer capacity and improving the 

system dynamics is becoming more evident.  
 
In recent years there has been vast interest into the application 
of decentralised control techniques to design damping control 
devices in power systems.  
 

A number of approaches to decentralised control have been 
proposed [2-5]. However, the focus of most of them are on 
decentralised design of low-order PSS in a SISO or MIMO 
framework; or otherwise, on the robust control design 
techniques which evidently result in high order controllers 
and thus proving a practical limitation amongst the network 

operators. 
 
Ramos et al. [4] used dynamic output feedback for 
decentralised design using LMIs considering multiple 
operating conditions. The controller order, however, is at 
least, as high as the open-loop plant.  Messina et al. used a 

decentralised approach to co-ordinate multiple FACTs 
devices using classical control approach; however, it may 
lack robustness with varying operating conditions [5]. 

Modulation of the active power order of an HVDC link could 
be extremely effective for damping low-frequency power 

oscillations [6], thereby increasing the transfer capacity of an 
AC transmission system.   
 
This paper examines the application of decentralised 
controllers through supplementary control of combined 
CSC/VSC HVDC systems for the damping of low-frequency 

electromechanical modes of oscillations which are inherent in 
large interconnected power systems. 
 
Subspace-based, MIMO system identification is used to 
estimate and validate linearised state-space models through 
pseudo random binary sequence (PRBS) probing in 

DIgSILENT.  The impact of both current source converter 
(CSC) and voltage source converter (VSC) based HVDC with 
only their primary control on the system stability is examined. 
VSC stations offer damping services at both ends of the line 
which could raise the stability limit of the remaining AC 
routes through modulation of either the active or reactive 

powers, or both, at each converter station. Hence, offering 
more flexibility than CSC systems where only the active 
power can be modulated. There are tremendous potential for 
VSC-HVDC systems to contribute towards improvement in 
AC system dynamics. Here, secondary control among the 
available control variables in both CSC-HVDC and VSC-

HVDC is demonstrated. The objective here is to establish by 
how much transmission system capacity might be improved 
by raising the AC stability limits through a series of DC 
upgrades with secondary control action.  
 
The contributions of this paper are as follows:   

 

 Development of detailed HVDC models in 
DIgSILENT PowerFactory 

 

 MIMO system identification and validation using 

sub-space state-space system identification ( N4SID) 
 

 The design of a decentralised controller to damp 

multiple swing modes through CSC/VSC HVDC 
devices 
 

 Validate the findings through linear and non-linear 
simulations in DIgSILENT PowerFactory 



2 Test Cases in DIgSILENT  

2.1 Test System 

A 14-machine, 59-bus study system, shown in Fig.1, was 

considered for the case study. This system has been recently 
adopted as an IEEE benchmark for stability studies [7].  

 

Figure 1 Simplified 14-machine equivalent of Australian system 
modelled in DIgSILENT 
 

The detailed description of the study system including 
network data and dynamics data for the generators, excitation 
systems, PSSs and SVCs can be obtained from [7]. The 
network constitutes of 5 areas in which areas 1 and 2 are more 
closely coupled electrically. Therefore, in essence the power 

system is made of 4 main regions and has 3 inter-area modes, 
as well as 10 local-area modes. The machines are equipped 
with either IEEE type AC1A, AC4A or ST5B excitation 
system models. All generators are supplied with speed-input 
power system stabilizers of second and fourth order transfer 
functions. Five Static VAr Compensators (SVCs), set in 

voltage control mode, are installed at nominated bus terminals 
(1 in each area), to improve the voltage profile of the system. 
The loads are all assumed to be of Constant Impedance (CI) 
type for all operating conditions.          

2.2 Problem Formulation 

The power system shown in Fig.1 was modelled and 

benchmarked against standard results [7] in DIgSILENT 
PowerFactory. To investigate power oscillation damping 
(POD) control through HVDC, 6 of the 14 PSSs were placed 

out of service to create a more oscillatory behaviour (see 
Table 1 for relative damping and frequency of inter-area 
modes). A point-to-point VSC- HVDC link was added in 
parallel to the AC corridors between area 2 and area 4 and a 
CSC- HVDC link was added in parallel to the AC corridors in 
area 1 and area 2 (see Figure 2).  

Area 1

Area 4
 

Area 2

 

V
S

C
-H

V
D

C
 

P
 =

 5
0

0
 M

W

MWP

MWP

L

Gen

450

317

MWP

MWP

L

Gen

9550

10550

MWP

MWP

L

Gen

4500

5187

V
d

c
r

V
d

c
i

P
i 

Q
i 

P
r Q

r 

Vdcr

Pi Pr 

CSC-HVDC 

A
C

 tra
n

s
m

is
s

io
n

 lin
e

A
C

 t
ra

n
s

m
is

s
io

n
 

li
n

e
s

P = 1134 MW

P
 =

 1
0

0
0

 M
W

Phasor Data 

Concemtrator (PDC)

Q
r m

o
d

 
P

r m
o

d
 

Q
i m

o
d

 

C
o

n
tro

l

c
e

n
te

r

C
o

n
tro

l

c
e

n
te

r

Area 3

MWP

MWP

L

Gen

2300

1836

Area 5

MWP

MWP

L

Gen

5500

5140

P
 =

 5
0

0
 M

W

Control

center

AC transmission lines

Pr mod 

PMU at

bus 507
PMU at

bus 405

bus angles 507 bus angles 405

A
C

 t
ra

n
s

m
is

s
io

n
 

li
n

e
s

 

Figure 2 14-machine, 5-area test system with CSC-HVDC and 
VSC-HVDC link. Secondary control loops with PMU signals are 
shown 

 

Both CSC and VSC based HVDC systems are modelled in 
detail in DIgSILENT Power Factory.  The primary controls 
for CSC-HVDC is based on the CIGRE benchmark model [8] 
with rating of +/- 500kV, 1000MW link. The VSC link has 
rating of +/- 150kV, 350MW. 

The DC links accommodate 50% of the total inter-area flows 
(originally accounted by the AC lines but now placed out of 
service - see grey transmission lines in Fig.1). Out of several 
scenarios considered the heavy loading scenario is presented 
here. In steady-state operation the active power order for 
CSC-HVDC was set to 50% of 1134MW and VSC-HVDC 

accommodating 50% of 500MW. The reactive power order 
was set to maintain close to unity power factor at the AC bus 
terminals. 
The problem is then formulated as the ability of the converter 
stations to provide services that enable optimised power flow 
and stabilising services (through control centres) for 

extending the  stability limit of the AC network.  
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3 Design Approach  

3.1 Linear Model Estimation and Validation 

Since it is not possible to directly obtain the linearised system 
models from DIgSILENT then system identification 
technique was used to estimate the linear model from the 

simulated outputs in response to appropriate probing signals 
at the inputs. Here, the linear model has 3 control inputs - Pr, 
Qr and Qi for the VSC HVDC and 1 control inputs – Pr for 
the CSC HVDC and 16 possible phase angle measurements 
available from the PMUs. Identification of such MIMO 
systems is quite challenging and gets further complicated with 

increase in number of output signals [9] 
 

The amplitude of the PRBS was chosen to be high enough to 
sufficiently excite the critical modes without pushing the 
responses into nonlinear zone. Persistent excitation of at least 
the model order of interest was provided. Moreover, the 

probing sequence for different inputs was ensured to be 
uncorrelated [10]. Typical PRBS injection signals used for 
probing the test system is shown in Fig. 3. 
 
The process for model identification and validation is 
illustrated in Fig.4. Using the input probing signal 

 and output responses 

 the matrices

 were calculated such that the simulated 

data resembled the responses from the estimated linear model. 
Numerical algorithm for subspace state space system 
identification (N4SID) [11] was used to estimate the above 
matrices. A model order of 35 was found to be appropriate. 
To validate the model an input pulse signal was applied to the 
identified and full model (see Fig.4). 

   

Figure 3 Typical PRBS injection used for system identification 
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Figure 4 Model identification and validation process 

3.2 Signal Selection 
 
Product of modal controllability and observability gives the 
Residue  which indicates the extent to 

which mode  can be observed and controlled through input 
and output . The elements of an eigenvector are complex 

numbers, in general, and as such modal controllability , 

modal observability  and residue are all complex 

numbers with a magnitude and a phase angle component.  
 
Once the residues corresponding to all possible input-output 
combinations are calculated and sorted in descending order of 

magnitude, the appropriate ones are chosen from the top (with 
highest residues) to ensure minimum control effort. Bus 
angles 405 and 507 (from area 4 and 5 respectively) yielded 
the highest residues and are subsequently chosen as the 
feedback signals for the damping controller. 

3.3 Controller Design 

In this work a decentralised control framework is used at the 
rectifier and inverter end control centres of the HVDC 
transmission systems (see Fig. 2). There are 4 possible control 
(modulation) inputs Prmod, Qrmod, Qimod (for VSC-HVDC) 
and Prmod (for CSC-HVDC), and 16 pre-selected outputs - 

the phase angles measured by the PMUs installed at 16 buses. 
Residues were calculated for all possible input-output 
combinations. For the case study presented, it was found from 
modal residues that modulating the CSC-HVDC active power 
and reactive power on rectifier side of VSC-HVDC would 
effectively meet the design objective of 10.0 s settling. 

Further control centres can obviously be used to possibly 
provide improved results. The conceptual representation of a 
decentralised control system for MIMO systems is shown in 
Fig. 5. 
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Figure 5 Conceptual representation of a decentralised control system 

for damping control  

A control system is referred to as decentralised if the off-

diagonal elements of the controller transfer function matrices 
are zero, as shown in the equation below. 
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It follows that each control centre  can be designed for 

individual HVDC converter station without any loss of 
performance or interacting with other control loops [12]. It is 
important to structurally decompose the decentralised control 
system into individual SISO loops to reduce the problems of 
interaction [5].The system consists of a set of SISO loops as 
shown in Fig.6. 
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Figure 6 Control centres composed of individual decentralised 
control,   

 

The use of decentralised structure can result in performance 
degradation compared to a full feedback system. However,   it 
leads to reduction in the number of tuning parameters, 
simplified hardware and is vastly used by industry compared 
to a centralised approach.   
 

3.4 Controller Synthesis 
 

The decentralised damping controller is required to ensure a 
settling time of 10.0 s for all operating conditions considered 
during the design stage whilst ensuring optimum control 
effort is achieved.  An objective function is minimised such 
that that the poles of the closed loop system are properly 
placed under each scenario. The objective function is as 

follows: 

       
Subject to the following constraints,   

       

   
 

Any evolutionary technique can be used to solve this multi-
objective constrained optimisation problem (i.e. genetic 
algorithm, particle swarm optimisation). The resulting 
controller is a 2-input, 2-outputs, with each channel of 4

th
 

order (see Fig.6). The controller was obtained using a PSO 
technique. The interested reader is referred to [13]. 

4 Simulation Results  

4.1 Linear Analysis  
 
 The location of the open-loop (blue) and closed-loop (black) 
poles (dominant modes of interest) are shown in Fig.7 for the 
nominal operating condition. A direct left shift for the three 
critical poles beyond the respective reference damping ratio 

lines can be observed with minimal frequency variation 
(shown by the arrow). 

The robustness of the designed controller is evaluated in 
terms of damping ratio ( ), frequency of oscillation (  and 

the settling time (  for each individual modal oscillations 
across a range of operating conditions.  Due to limited space 
the results presented here are for the nominal operating point.  

 

Figure 7 Location of open-loop and closed-loop poles (not including 
the higher frequency and fast settling modes) under nominal 

operating condition 

 

Figure 8 Open-loop and closed-loop settling times (in sec) for the 

three modal oscillations under the nominal operating condition.  

  
The closed-loop settling times for the critical inter-area 
modes, shown in Fig.8, are within the target settling time of 
10.0 s. This indicates that the original design specification 
(specified by the horizontal solid line) is achieved. 

The impact of both VSC and CSC based HVDC systems 
within the AC system on the relative damping ratio (ζ) and 
modal frequency (ƒ) with only their primary control is shown 
in Table 1.   
 
Referring to Table 1, in closed-loop, c), it can be seen that the 

damping ratios are significantly improved from those in b) to 
achieve the minimum settling time (see bold-faced).  The 
range of frequency variation is not too significant; 0.03 Hz 
(0.27 – 0.30Hz), 0.1Hz (0.35-0.45Hz) and 0.01Hz (0.52-
0.53Hz) for modes 1, 2 and 3, respectively. A constraint on 
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the frequency can be considered in the design stage to 
minimise the variation but the impact is not considerable. 

Mode a) AC system 
only 

b) with multiple 
HVDC 

c) Multiple 
HVDC + POD 

 no. ζ, % ƒ, Hz ζ, % ƒ, Hz ζ, % ƒ, Hz 

1 10.1 0.29 10.2 0.27 20.7 0.30 

2 11.1 0.35 12.9 0.35 18.0 0.45 

3 6.5 0.55 5.5 0.52 14.6 0.53 

 
Table 1 Relative damping ratio, ζ, and modal frequency, ƒ, of 
multiple HVDC with primary controls (b) and with POD control (c) 
against AC system only (a) for the nominal operating condition.  

  

The performance in presence of nonlinearities is presented in 
the next section through time domain simulations.  
 

4.2 Nonlinear Simulation 
 

Nonlinear simulations are conducted in DIgSILENT 
PowerFactory to demonstrate the performance of the designed 

controller. A severe three-phase solid fault at a critical bus 
(Inverter-side of CSC) for 5 cycles (100ms) followed by 
outage of one of the adjacent lines between area 1 and area 2 
is simulated.  
 
The top two subplots (a, b) show the angular separation 

between G503, G301 with the slack generator G101; the 
power flow in the AC corridor between areas 2- 4 is exhibited 
in (c) and the HVDC modulation signals required to damp out 
the oscillation’s is shown in (d). The CSC-HVDC bus voltage 
ends are shown in (e, f) and finally the VSC-HVDC Inverter 
d-axis and q-axis currents (  ) are plotted in (g and h) 

respectively. 
 

 

Figure 9 Dynamic behaviour of the system following a fault at bus 
102 for 5 cycles and subsequent outage of line 102_207 

Figure 9 (a, b, c) show that oscillations settle slightly beyond 
10.0 s. This is due to the severity of the fault which has 
violated the limits of the VSC-HVDC, as is evident from (d).  
It is also clear from (d) that a considerably higher control 
effort is demanded from reactive power VSC modulation 
signal Qrmod as compared to the modulation signal required 

from the CSC Pr mod. During the fault, the dc bus voltages at 
both HVDC ends drop sharply due to reduction of ac side 
power transfer. This is followed by oscillations in Vdcr due to 
the dc link dynamics while the Vdci is regulated to a constant 

value, see subplots (e, f). Because of the magnitude of the 
fault close to inverter bus, Idi is seen to violate its respective 
limits, see subplot (g). 

5 Summary 

The damping of multi-modal oscillations through 
supplementary control of multiple HVDC systems is 

presented. It was found that active power modulation through 
CSC and reactive power modulation through VSC provided 
adequate damping through an 8

th
 order (2input- 2output) 

decentralised controller. 
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