50 research outputs found

    Antihydrogen formation dynamics in a multipolar neutral anti-atom trap

    Get PDF
    Antihydrogen production in a neutral atom trap formed by an octupole-based magnetic field minimum is demonstrated using field-ionization of weakly bound anti-atoms. Using our unique annihilation imaging detector, we correlate antihydrogen detection by imaging and by field-ionization for the first time. We further establish how field-ionization causes radial redistribution of the antiprotons during antihydrogen formation and use this effect for the first simultaneous measurements of strongly and weakly bound antihydrogen atoms. Distinguishing between these provides critical information needed in the process of optimizing for trappable antihydrogen. These observations are of crucial importance to the ultimate goal of performing CPT tests involving antihydrogen, which likely depends upon trapping the anti-atom

    Search For Trapped Antihydrogen

    Get PDF
    We present the results of an experiment to search for trapped antihydrogen atoms with the ALPHA antihydrogen trap at the CERN Antiproton Decelerator. Sensitive diagnostics of the temperatures, sizes, and densities of the trapped antiproton and positron plasmas have been developed, which in turn permitted development of techniques to precisely and reproducibly control the initial experimental parameters. The use of a position-sensitive annihilation vertex detector, together with the capability of controllably quenching the superconducting magnetic minimum trap, enabled us to carry out a high-sensitivity and low-background search for trapped synthesised antihydrogen atoms. We aim to identify the annihilations of antihydrogen atoms held for at least 130 ms in the trap before being released over ~30 ms. After a three-week experimental run in 2009 involving mixing of 10^7 antiprotons with 1.3 10^9 positrons to produce 6 10^5 antihydrogen atoms, we have identified six antiproton annihilation events that are consistent with the release of trapped antihydrogen. The cosmic ray background, estimated to contribute 0.14 counts, is incompatible with this observation at a significance of 5.6 sigma. Extensive simulations predict that an alternative source of annihilations, the escape of mirror-trapped antiprotons, is highly unlikely, though this possibility has not yet been ruled out experimentally.Comment: 12 pages, 7 figure

    Constraints on Dark Matter Annihilation in Clusters of Galaxies with the Fermi Large Area Telescope

    Full text link
    Nearby clusters and groups of galaxies are potentially bright sources of high-energy gamma-ray emission resulting from the pair-annihilation of dark matter particles. However, no significant gamma-ray emission has been detected so far from clusters in the first 11 months of observations with the Fermi Large Area Telescope. We interpret this non-detection in terms of constraints on dark matter particle properties. In particular for leptonic annihilation final states and particle masses greater than ~200 GeV, gamma-ray emission from inverse Compton scattering of CMB photons is expected to dominate the dark matter annihilation signal from clusters, and our gamma-ray limits exclude large regions of the parameter space that would give a good fit to the recent anomalous Pamela and Fermi-LAT electron-positron measurements. We also present constraints on the annihilation of more standard dark matter candidates, such as the lightest neutralino of supersymmetric models. The constraints are particularly strong when including the fact that clusters are known to contain substructure at least on galaxy scales, increasing the expected gamma-ray flux by a factor of ~5 over a smooth-halo assumption. We also explore the effect of uncertainties in cluster dark matter density profiles, finding a systematic uncertainty in the constraints of roughly a factor of two, but similar overall conclusions. In this work, we focus on deriving limits on dark matter models; a more general consideration of the Fermi-LAT data on clusters and clusters as gamma-ray sources is forthcoming.Comment: accepted to JCAP, Corresponding authors: T.E. Jeltema and S. Profumo, minor revisions to be consistent with accepted versio

    The On-orbit Calibrations for the Fermi Large Area Telescope

    Full text link
    The Large Area Telescope (LAT) on--board the Fermi Gamma ray Space Telescope began its on--orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here we describe on orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be described in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. These results have been used to calibrate the LAT datasets to be publicly released in August 2009.Comment: 60 pages, 34 figures, submitted to Astroparticle Physic

    The spectral energy distribution of fermi bright blazars

    Get PDF
    We have conducted a detailed investigation of the broadband spectral properties of the γ-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi γ-ray spectra with Swift, radio, infra-red, optical, and other hard X-ray/γ-ray data, collected within 3 months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous spectral energy distributions (SED) for 48 LBAS blazars. The SED of these γ-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual log ν-log ν Fν representation, the typical broadband spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SED to characterize the peak intensity of both the low- and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broadband colors (i.e., the radio to optical, αro, and optical to X-ray, αox, spectral slopes) and from the γ-ray spectral index. Our data show that the synchrotron peak frequency (νSpeak) is positioned between 1012.5 and 1014.5 Hz in broad-lined flat spectrum radio quasars (FSRQs) and between 10 13 and 1017 Hz in featureless BL Lacertae objects. We find that the γ-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron-inverse Compton scenarios. However, simple homogeneous, one-zone, synchrotron self-Compton (SSC) models cannot explain most of our SED, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. More complex models involving external Compton radiation or multiple SSC components are required to reproduce the overall SED and the observed spectral variability. While more than 50% of known radio bright high energy peaked (HBL) BL Lacs are detected in the LBAS sample, only less than 13% of known bright FSRQs and LBL BL Lacs are included. This suggests that the latter sources, as a class, may be much fainter γ-ray emitters than LBAS blazars, and could in fact radiate close to the expectations of simple SSC models. We categorized all our sources according to a new physical classification scheme based on the generally accepted paradigm for Active Galactic Nuclei and on the results of this SED study. Since the LAT detector is more sensitive to flat spectrum γ-ray sources, the correlation between νSpeak and γ-ray spectral index strongly favors the detection of high energy peaked blazars, thus explaining the Fermi overabundance of this type of sources compared to radio and EGRET samples. This selection effect is similar to that experienced in the soft X-ray band where HBL BL Lacs are the dominant type of blazars. © 2010 The American Astronomical Society

    Insights into the high-energy γ-ray emission of Markarian 501 from extensive multifrequency observations in the Fermi era

    Get PDF
    We report on the γ-ray activity of the blazar Mrk 501 during the first 480 days of Fermi operation. We find that the average Large Area Telescope (LAT) γ-ray spectrum of Mrk 501 can be well described by a single power-law function with a photon index of 1.78 ± 0.03. While we observe relatively mild flux variations with the Fermi-LAT (within less than a factor of two), we detect remarkable spectral variability where the hardest observed spectral index within the LAT energy range is 1.52 ± 0.14, and the softest one is 2.51 ± 0.20. These unexpected spectral changes do not correlate with the measured flux variations above 0.3 GeV. In this paper, we also present the first results from the 4.5 month long multifrequency campaign (2009 March 15-August 1) on Mrk 501, which included the Very Long Baseline Array (VLBA), Swift, RXTE, MAGIC, and VERITAS, the F-GAMMA, GASP-WEBT, and other collaborations and instruments which provided excellent temporal and energy coverage of the source throughout the entire campaign. The extensive radio to TeV data set from this campaign provides us with the most detailed spectral energy distribution yet collected for this source during its relatively low activity. The average spectral energy distribution of Mrk 501 is well described by the standard one-zone synchrotron self-Compton (SSC) model. In the framework of this model, we find that the dominant emission region is characterized by a size ≲0.1 pc (comparable within a factor of few to the size of the partially resolved VLBA core at 15-43 GHz), and that the total jet power (≃1044 erg s-1) constitutes only a small fraction (∼10-3) of the Eddington luminosity. The energy distribution of the freshly accelerated radiating electrons required to fit the time-averaged data has a broken power-law form in the energy range 0.3 GeV-10 TeV, with spectral indices 2.2 and 2.7 below and above the break energy of 20 GeV. We argue that such a form is consistent with a scenario in which the bulk of the energy dissipation within the dominant emission zone of Mrk 501 is due to relativistic, proton-mediated shocks. We find that the ultrarelativistic electrons and mildly relativistic protons within the blazar zone, if comparable in number, are in approximate energy equipartition, with their energy dominating the jet magnetic field energy by about two orders of magnitude. © 2011. The American Astronomical Society

    Plasma Aβ42 correlates positively with increased body fat in healthy individuals

    Get PDF
    Obesity and overweight, well known risk factors for cardiovascular disease and type 2 diabetes, are now associated with Alzheimer's disease (AD). It remains to be determined if obesity and overweight contribute to the risk of developing AD through modulating levels of amyloid-beta (Aβ), a key molecule in AD pathogenesis. Thus, we investigated whether there were any associations between plasma Aβ levels and body mass index (BMI) or fat mass (FM) in a group of 18 healthy adults. A statistically significant correlation was found between BMI, FM, and plasma levels of Aβ42 (BMI r= 0.602, P=0.008; FM r= 0.547, P=0.019), the longer, more pathogenic form of Aβ, but not with plasma levels of the shorter, less pathogenic Aβ40. Although not significant, positive correlations between plasma levels of Aβ42 and levels of insulin and the inflammatory marker C-reactive protein (CRP), along with an inverse trend between plasma Aβ42 levels and levels of high density lipoprotein (HDL) were answered. These results suggest that proteins implicated in inflammation, cardiovascular disease and type 2 diabetes, which in turn are risk factors for AD, may contribute to the associations between BMI/FM and plasma Aβ42 levels. Longitudinal studies involving larger cohorts are required to determine if elevated body fat may predispose individuals to AD through increasing Aβ42 levels throughout early to late adulthood

    Differential protein composition of bovine whey: a comparison of whey from healthy animals and from those with clinical mastitis

    No full text
    During clinical mastitis in dairy cows, the quantity of milk produced decreases and the composition of the milk is altered. As the severity of inflammation associated with the disease increases, the chemical composition of milk approaches that of blood as a consequence of increased permeability of the blood mammary barrier, or de novo intramammary synthesis, as has been suggested for mammary associated serum amyloid A3. A better understanding of these events may provide new approaches for the diagnosis and treatment of mastitis. The objective of this study was to document the changes in the protein composition of milk during clinical mastitis using a proteomic approach, with the objective of identifying new diagnostic markers of mastitis. Whey from dairy cows with clinical mastitis was compared to whey from healthy animals by two‐dimensional gel electrophoresis (2‐DE) with colloidal Coomassie staining and matrix‐assisted desorption/ionization mass spectrometry. Increases in the concentrations of proteins of blood serum origin, including serotransferrin and albumin, were identified in mastitic whey compared to normal whey, while concentrations of the major whey proteins α‐lactalbumin and β‐lactoglobulin were reduced in mastitic whey. Mass spectrometry subsequently confirmed the location of albumin, α‐lactalbumin and β‐lactoglobulin on the 2‐DE gels at M r/pI of 69 294/5.8, 14 200/4.5 and 19 883/4.9 respectively

    Adaptive delay lines implemented on a photonics chip for extended-range, high-speed absolute distance measurement

    No full text
    High-speed (upwards of 105 coordinates s-1) and long-range (~10 m) absolute distance measurement applications based on frequency scanning interferometry (FSI) generate very high modulation frequencies (typically &gt;100 GHz) due to the laser frequency sweep rate and the large imbalance between the reference and object arms. Such systems are currently impractical due to the extremely high cost associated with sampling at these signal frequencies. Adaptive delay lines (ADLs) were recently proposed as a solution to balance the interferometer and therefore reduce sampling rate requirements by a factor of 2N, where N is the number of switches in the ADL [1, 2]. The technique has been successfully demonstrated in the lab using bulk optics and optical fiber configurations, and further reduction in size and cost will increase the breadth of metrology applications that can be addressed. Silicon photonics constitute an effective platform to miniaturize ADLs to chip-scale, simplifying instrument manufacture and providing a more robust configuration compared to bulk-optics and fiber-based solutions. We discuss the design and fabrication of chip-scale ADLs on a silicon on insulator (SOI) photonics platform, using optical switches based on heaters, multi-mode interferometer (MMI) couplers and Mach-Zehnder interferometers (MZI). We also establish the heater voltages of 4 switches in series, required to switch the optical path in the reference arm, a necessary step to use the device for FSI range measurements.</p
    corecore