1,041 research outputs found

    Do the Barker Codes End?

    Get PDF
    A Barker code is a binary code with k^th autocorrelation <= 1 for all nonzero k. At the workshop, the Barker code group split into four non-disjoint subgroups: - An "algebra group", who explored symmetries of the search space that preserve the autocorrelations' magnitude. - A "computing group", who explored methods for quickly finding binary codes with very good autocorrelation properties. - A "statistics group", who explored ways to quantify what has been empirically observed about autocorrelation in the search space S_2^N. - A "continuous group", who explored a non-discrete analogue of the problem of finding sequences with good autocorrelations

    Magnetic anomalies in the spin chain system, Sr3_3Cu1x_{1-x}Znx_xIrO6_6

    Full text link
    We report the results of ac and dc magnetization (M) and heat-capacity (C) measurements on the solid solution, Sr3_3Cu1x_{1-x}Znx_xIrO6_6. While the Zn end member is known to form in a rhombohedral pseudo one-dimensional K4_4CdCl6_6 structure with an antiferromagnetic ordering temperature of (TN_N =) 19 K, the Cu end member has been reported to form in a monoclinically distorted form with a Curie temperature of (TC_C =) 19 K. The magnetism of the Zn compound is found to be robust to synthetic conditions and is broadly consistent with the behavior known in the literature. However, we find a lower magnetic ordering temperature (To_o) for our Cu compound (~ 13 K), thereby suggesting that To_o is sensitive to synthetic conditions. The Cu sample appears to be in a spin-glass-like state at low temperatures, judged by a frequency dependence of ac magnetic susceptibility and a broadening of the C anomaly at the onset of magnetic ordering, in sharp contrast to earlier proposals. Small applications of magnetic field, however, drive this system to ferromagnetism as inferred from the M data. Small substitutions for Cu/Zn (x = 0.75 or 0.25) significantly depress magnetic ordering; in other words, To_o varies non-monotonically with x (To_o ~ 6, 3 and 4 K for x = 0.25, 0.5, and 0.67 respectively). The plot of inverse susceptibility versus temperature is non-linear in the paramagnetic state as if correlations within (or among) the magnetic chains continuously vary with temperature. The results establishComment: 7 pages, 7 figures, Revte

    Beyond traditional wind farm noise characterisation using transfer learning

    Get PDF
    Published Online: 10 May 2022This study proposes an approach for the characterisation and assessment of wind farm noise (WFN), which is based on extraction of acoustic features between 125 and 7500 Hz from a pretrained deep learning model (referred to as deep acoustic features). Using data measured at a variety of locations, this study shows that deep acoustic features can be linked to meaningful characteristics of the noise. This study finds that deep acoustic features can reveal an improved spatial and temporal representation of WFN compared to what is revealed using traditional spectral analysis and overall noise descriptors. These results showed that this approach is promising, and thus it could provide the basis for an improved framework for WFN assessment in the future.Phuc D. Nguyen, Kristy L. Hansen, Bastien Lechat, Branko Zajamsek, Colin Hansen, and Peter Catchesid

    Energy Spectrum of Bloch Electrons Under Checkerboard Field Modulations

    Full text link
    Two-dimensional Bloch electrons in a uniform magnetic field exhibit complex energy spectrum. When static electric and magnetic modulations with a checkerboard pattern are superimposed on the uniform magnetic field, more structures and symmetries of the spectra are found, due to the additional adjustable parameters from the modulations. We give a comprehensive report on these new symmetries. We have also found an electric-modulation induced energy gap, whose magnitude is independent of the strength of either the uniform or the modulated magnetic field. This study is applicable to experimentally accessible systems and is related to the investigations on frustrated antiferromagnetism.Comment: 8 pages, 6 figures (reduced in sizes), submitted to Phys. Rev.

    Shape-optimization of 2D hydrofoils using an isogeometric BEM solver

    Get PDF
    In this paper, an optimization procedure, based on an Isogeometric BEM solver for the potential flow, is developed and used for the shape optimization of hydrofoils. The formulation of the exterior potential-flow problem reduces to a Boundary-Integral Equation (BIE) for the associated velocity potential exploiting the null-pressure jump Kutta condition at the trailing edge. The numerical solution of the BIE is performed by an Isogeometric Boundary-Element Method (BEM) combining a generic B-splines parametric modeler for generating hydrofoil shapes, using a set of eight parameters, the very same basis of the geometric representation for representing the velocity potential and collocation at the Greville abscissas of the knot vector of the hydrofoil's B-splines representation. Furthermore, the optimization environment is developed based on the geometric parametric modeler for the hydrofoil, the Isogeometric BEM solver and an optimizer employing a controlled elitist genetic algorithm. Multi-objective hydrofoil shape optimization examples are demonstrated with respect to the criteria (i) maximum lift coefficient and (ii) minimum deviation of the hydrofoil area from a reference area

    Envisioning the future of aquatic animal tracking: Technology, science, and application

    Get PDF
    Electronic tags are significantly improving our understanding of aquatic animal behavior and are emerging as key sources of information for conservation and management practices. Future aquatic integrative biology and ecology studies will increasingly rely on data from electronic tagging. Continued advances in tracking hardware and software are needed to provide the knowledge required by managers and policymakers to address the challenges posed by the world's changing aquatic ecosystems. We foresee multiplatform tracking systems for simultaneously monitoring the position, activity, and physiology of animals and the environment through which they are moving. Improved data collection will be accompanied by greater data accessibility and analytical tools for processing data, enabled by new infrastructure and cyberinfrastructure. To operationalize advances and facilitate integration into policy, there must be parallel developments in the accessibility of education and training, as well as solutions to key governance and legal issues

    In situ synchrotron radiography and spectrum analysis of transient cavitation bubbles in molten aluminium alloy

    Get PDF
    The melt processing of conventional and advanced metallic materials with high-intensity ultrasonic vibrations significantly improves the quality and properties of molten metals during their solidification. These improvements are primarily attributed to ultrasonic cavitation: the creation, growth, pulsation, and collapse of bubbles in the liquid. However, the development of practical applications is limited by the lack of fundamental knowledge on the dynamics of the cavitation bubbles; it is very difficult to directly observe ultrasonic cavitation using conventional techniques in molten metals due their high temperature and opaqueness. In this study, an in situ synchrotron radiography experiment was performed to investigate bubble dynamics in an Al-10 wt.% Cu alloy under an external ultrasound field at 30 kHz. Radiographs with an exposure time of 78 ms were collected continuously during the sonication of molten alloys at temperatures of 660±10 °C. To the best of our knowledge, this is the first time that transient cavitation bubbles have been observed in liquid aluminium. Quantification of bubble parameters such as average size and time of collapse were evaluated from radiographs using advanced image analysis. Additionally, broadband noise associated with the acoustic emissions from shock waves of transient cavitation bubbles and estimation of the real-time acoustic pressure at the driving frequency were assessed using an advanced high-temperature cavitometer in separate bulk experiments.The ExoMet Project (FP7-NMP3-LA-2012-280421), the UK Engineering and Physical Sciences Research Council (EPSRC) (EP/K005804/1 and EP/I02249X/1), and provision of beamtime on the Diamond Manchester Branchline at Diamond Light Source (expt. MT9082-1)

    Pair-matched patient-reported quality of life and early oncological control following focal irreversible electroporation versus robot-assisted radical prostatectomy

    Get PDF
    Purpose: The design, conduct and completion of randomized trials for curative prostate cancer (PCa) treatments are challenging. To evaluate the effect of robot-assisted radical prostatectomy (RARP) versus focal irreversible electroporation (IRE) on patient-reported quality of life (QoL) and early oncological control using propensity-scored matching. Methods: Patients with T1c–cT2b significant PCa (hig
    corecore