952 research outputs found

    Computing Fractional Flow Reserve From Invasive Coronary Angiography Getting Closer

    Get PDF

    Transumbilical portal decompression

    Get PDF
    Click on the link to view

    A shocking twist

    Get PDF

    Self-directed experiential learning to meet ever-changing entrepreneurship demands

    Get PDF
    Purpose:- Policy makers have called for more entrepreneurship throughout societies as a response to the digital transformation. This paper argues that the rapidly changing conditions of the digital age indeed mark a change in the bases of entrepreneurship. Specifically, as adaptivity becomes key, a learning capacity and general ability to adapt becomes a critical factor in entrepreneurial activity. The paper identifies self-directed learning as a fundamental competence in this regard and examines its role for entrepreneurship and entrepreneurial competence. Design/methodology/approach:- The paper develops a theoretical framework for the role of self-directed learning in entrepreneurship through a process of systematic review of previous studies that have linked self-directed learning to entrepreneurship. Findings:- The formulated theoretical framework shows how self-directed learning competence combines with experiential learning in supporting the kind of adaptivity needed for entrepreneurial competence, especially under more rapidly changing conditions. Self-directed learning competence also gains wider importance through enabling individuals to meet the demands of organizational changes in our highly volatile world. Practical implications:- Self-directed learning competence prepares individuals for entrepreneurship and resilience in face of rapid changes as well as for being more entrepreneurial in the conduct of their lives more generally. Fostering self-directed learning competence can thus be regarded as an important objective of entrepreneurship education. Originality/value:- The described Self-directed Experiential Learning Cycle offers a novel perspective that clarifies how both self-directed and experiential learning competences are integral for understanding the basis of adaptiveness in entrepreneurial activity

    Virtual Coronary Intervention: A Treatment Planning Tool Based Upon the Angiogram

    Get PDF
    Objectives: This study sought to assess the ability of a novel virtual coronary intervention (VCI) tool based on invasive angiography to predict the patient's physiological response to stenting. Background: Fractional flow reserve (FFR)-guided percutaneous coronary intervention (PCI) is associated with improved clinical and economic outcomes compared with angiographic guidance alone. Virtual (v)FFR can be calculated based upon a 3-dimensional (3D) reconstruction of the coronary anatomy from the angiogram, using computational fluid dynamics (CFD) modeling. This technology can be used to perform virtual stenting, with a predicted post-PCI FFR, and the prospect of optimized treatment planning. Methods: Patients undergoing elective PCI had pressure-wire-based FFR measurements pre- and post-PCI. A 3D reconstruction of the diseased artery was generated from the angiogram and imported into the VIRTUheart workflow, without the need for any invasive physiological measurements. VCI was performed using a radius correction tool replicating the dimensions of the stent deployed during PCI. Virtual FFR (vFFR) was calculated pre- and post-VCI, using CFD analysis. vFFR pre- and post-VCI were compared with measured (m)FFR pre- and post-PCI, respectively. Results: Fifty-four patients and 59 vessels underwent PCI. The mFFR and vFFR pre-PCI were 0.66 ± 0.14 and 0.68 ± 0.13, respectively. Pre-PCI vFFR deviated from mFFR by ±0.05 (mean Δ = -0.02; SD = 0.07). The mean mFFR and vFFR post-PCI/VCI were 0.90 ± 0.05 and 0.92 ± 0.05, respectively. Post-VCI vFFR deviated from post-PCI mFFR by ±0.02 (mean Δ = -0.01; SD = 0.03). Mean CFD processing time was 95 s per case. Conclusions: The authors have developed a novel VCI tool, based upon the angiogram, that predicts the physiological response to stenting with a high degree of accuracy

    Modelling and experimental studies of alternative heat treatments in Steel 92 to optimise long term stress rupture properties

    Get PDF
    The desire for power plant to give increased generating efficiency and decreased CO2 emission has led to considerable effort over the last 10-15 years, to develop ferritic-martensitic steels which can be used for steam temperatures up to about 650°C. Examples are the addition of boron and increasing chromium content to 10-12 wt-%. However, high chromium levels have led to problems with long term precipitate stability. One approach which has not been widely explored, is the use of novel heat treatments to optimise the preservice microstructure to give the best long term creep rupture strength. Increased austenitising temperatures and lower tempering temperatures have been examined in Steel 92 (9Cr-0·5Mo-2W) and have produced significant improvements in creep rupture strength at temperatures up to 650°C compared with material given a conventional heat treatment. This has been achieved without any loss in ductility compared with conventional heat treatments. Test data for durations in excess of 40 000 h are presented. Modelling of microstructure evolution based on Monte Carlo simulations has shown important differences especially in the stability of grain boundary M23C6 and intragranular MX particles, between material with conventional and modified heat treatments. The model predictions are in good agreement with metallographic observations made on material before and after stress rupture testing. Continuum creep damage mechanics modelling based on the microstructural evolution has also been applied to predict creep life of Steel 92 and satisfactory agreement with creep rupture tests has been obtained

    Cardiac auscultation: normal and abnormal

    Get PDF

    When is rotational angiography superior to conventional single-plane angiography for planning coronary angioplasty?

    Get PDF
    Objectives: To investigate the value of rotational coronary angiography (RoCA) in the context of percutaneous coronary intervention (PCI) planning. Background: As a diagnostic tool, RoCA is associated with decreased patient irradiation and contrast use compared with conventional coronary angiography (CA) and provides superior appreciation of three-dimensional anatomy. However, its value in PCI remains unknown. Methods: We studied stable coronary artery disease assessment and PCI planning by interventional cardiologists. Patients underwent either RoCA or conventional CA pre-PCI for planning. These were compared with the referral CA (all conventional) in terms of quantitative lesion assessment and operator confidence. An independent panel reanalyzed all parameters. Results: Six operators performed 127 procedures (60 RoCA, 60 conventional CA, and 7 crossed-over) and assessed 212 lesions. RoCA was associated with a reduction in the number of lesions judged to involve a bifurcation (23 vs. 30 lesions, P < 0.05) and a reduction in the assessment of vessel caliber (2.8 vs. 3.0 mm, P < 0.05). RoCA improved confidence assessing lesion length (P = 0.01), percentage stenosis (P = 0.02), tortuosity (P < 0.04), and proximity to a bifurcation (P = 0.03), particularly in left coronary artery cases. X-ray dose, contrast agent volume, and procedure duration were not significantly different. Conclusions: Compared with conventional CA, RoCA augments quantitative lesion assessment, enhances confidence in the assessment of coronary artery disease and the precise details of the proposed procedure, but does not affect X-ray dose, contrast agent volume, or procedure duration. © 2015 Wiley Periodicals, Inc
    • …
    corecore