1,566 research outputs found

    Short-time scaling behavior of growing interfaces

    Full text link
    The short-time evolution of a growing interface is studied within the framework of the dynamic renormalization group approach for the Kadar-Parisi-Zhang (KPZ) equation and for an idealized continuum model of molecular beam epitaxy (MBE). The scaling behavior of response and correlation functions is reminiscent of the ``initial slip'' behavior found in purely dissipative critical relaxation (model A) and critical relaxation with conserved order parameter (model B), respectively. Unlike model A the initial slip exponent for the KPZ equation can be expressed by the dynamical exponent z. In 1+1 dimensions, for which z is known exactly, the analytical theory for the KPZ equation is confirmed by a Monte-Carlo simulation of a simple ballistic deposition model. In 2+1 dimensions z is estimated from the short-time evolution of the correlation function.Comment: 27 pages LaTeX with epsf style, 4 figures in eps format, submitted to Phys. Rev.

    Current driven switching of magnetic layers

    Full text link
    The switching of magnetic layers is studied under the action of a spin current in a ferromagnetic metal/non-magnetic metal/ferromagnetic metal spin valve. We find that the main contribution to the switching comes from the non-equilibrium exchange interaction between the ferromagnetic layers. This interaction defines the magnetic configuration of the layers with minimum energy and establishes the threshold for a critical switching current. Depending on the direction of the critical current, the interaction changes sign and a given magnetic configuration becomes unstable. To model the time dependence of the switching process, we derive a set of coupled Landau-Lifshitz equations for the ferromagnetic layers. Higher order terms in the non-equilibrium exchange coupling allow the system to evolve to its steady-state configuration.Comment: 8 pages, 2 figure. Submitted to Phys. Rev.

    Applying Bayesian Neural Networks to Separate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    A toy detector has been designed to simulate central detectors in reactor neutrino experiments in the paper. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of the toy detector are generated in the signal region. The Bayesian Neural Networks(BNN) are applied to separate neutrino events from backgrounds in reactor neutrino experiments. As a result, the most neutrino events and uncorrelated background events in the signal region can be identified with BNN, and the part events each of the fast neutron and 8^{8}He/9^{9}Li backgrounds in the signal region can be identified with BNN. Then, the signal to noise ratio in the signal region is enhanced with BNN. The neutrino discrimination increases with the increase of the neutrino rate in the training sample. However, the background discriminations decrease with the decrease of the background rate in the training sample.Comment: 9 pages, 1 figures, 1 tabl

    Impurity effects on s+g-wave superconductivity in borocarbides Y(Lu)Ni_2B_2C

    Full text link
    Recently a hybrid s+g-wave pairing is proposed to describe the experimental observation for a nodal structure of the superconducting gap in borocarbide YNi2_2B2_2C and possibly LuNi2_2B2_2C. In this paper the impurity effects on the s+g-wave superconductivity are studied in both Born and unitarity limit. The quasiparticle density of states and thermodynamics are calculated. It is found that the nodal excitations in the clean system are immediately prohibited by impurity scattering and a finite energy gap increases quickly with the impurity scattering rate. This leads to an activated behavior in the temperature dependence of the specific heat. Qualitative agreement with the experimental results is shown. Comparison with d-wave and some anisotropic s-wave studied previously is also made.Comment: 6 pages, 6 eps figure

    Iron pnictides: Single crystal growth and effect of doping on structural, transport and magnetic properties

    Full text link
    We demonstrate the preparation of large, free standing iron pnictide single crystals with a size up to 20 x 10 x 1 mm3 using solvents in zirconia crucibles under argon atmosphere. Transport and magnetic properties are investigated to study the effect of potassium doping on the structural and superconducting property of the compounds. The spin density wave (SDW) anomaly at Ts ~138 K in BaFe2As2 single crystals from self-flux shifts to Ts ~85 K due to Sn solvent growth. We show direct evidence for an incorporation of Sn on the Fe site. The electrical resistivity data show a sharp superconducting transition temperature Tc~38.5 K for the single crystal of Ba0.68K0.32Fe2As2. A nearly 100% shielding fraction and bulk nature of the superconductivity for the single crystal were confirmed by magnetic susceptibility data. A sharp transition Tc~25 K occurred for the single crystal of Sr0.85K0.15Fe2As2. There is direct evidence for a coexistence of the SDW and superconductivity in the low doping regime of Sr1-xKxFe2As2 single crystals. Structural implications of the doping effects as well as the coexistence of the two order parameters are discussed.Comment: 22 pages, 9 figure

    Anatomy of Spin-Transfer Torque

    Full text link
    Spin-transfer torques occur in magnetic heterostructures because the transverse component of a spin current that flows from a non-magnet into a ferromagnet is absorbed at the interface. We demonstrate this fact explicitly using free electron models and first principles electronic structure calculations for real material interfaces. Three distinct processes contribute to the absorption: (1) spin-dependent reflection and transmission; (2) rotation of reflected and transmitted spins; and (3) spatial precession of spins in the ferromagnet. When summed over all Fermi surface electrons, these processes reduce the transverse component of the transmitted and reflected spin currents to nearly zero for most systems of interest. Therefore, to a good approximation, the torque on the magnetization is proportional to the transverse piece of the incoming spin current.Comment: 16 pages, 8 figures, submitted to Phys. Rev.

    Functional Electrical Stimulation of Peroneal Muscles on Balance in Healthy Females.

    Get PDF
    Balance improvement could contribute to ankle stability for the prevention of ankle sprains. Functional electrical stimulation (FES) is an effective way of augmenting muscle activity and improving balance. This study investigated the effect of FES of peroneal muscles on single-and double-leg balance. Fifteen healthy females (age = 23:1±1:6 years, height = 1:63 ± 0:07 m, and weight = 63:7±9:9 kg) performed single- and double-leg standing balance tests with eyes open and closed before and after 15-minute FES intervention during treadmill running at a comfortable, self-selected pace. FES of peroneal muscles was provided bilaterally, using an Odstock Dropped Foot Stimulator. The total excursion of the centre of pressure (COP) was calculated to assess the standing balance control ability. The total excursion of COP in single- and double-leg stance with eyes open reduced significantly after FES intervention by 14.7% (p < 0:001) and 5.9% (p = 0:031), respectively. The eyes-closed condition exhibited a 12.7% (p = 0:002) reduction in single-leg stance but did not significantly change in double-leg stance (p > 0:05). Limb preference did not account for balance postintervention. No significant difference in total excursion of COP was found between preferred and less preferred limbs with both visual conditions (p > 0:05). FES of peroneal muscles improved standing balance control with eyes open in double-leg and single-leg stance and with eyes closed in double-leg stance. The improvements in balance control with FES treatment did not vary concerning limb preference

    Improving Application of Bayesian Neural Networks to Discriminate Neutrino Events from Backgrounds in Reactor Neutrino Experiments

    Full text link
    The application of Bayesian Neural Networks(BNN) to discriminate neutrino events from backgrounds in reactor neutrino experiments has been described in Ref.\cite{key-1}. In the paper, BNN are also used to identify neutrino events in reactor neutrino experiments, but the numbers of photoelectrons received by PMTs are used as inputs to BNN in the paper, not the reconstructed energy and position of events. The samples of neutrino events and three major backgrounds from the Monte-Carlo simulation of a toy detector are generated in the signal region. Compared to the BNN method in Ref.\cite{key-1}, more 8^{8}He/9^{9}Li background and uncorrelated background in the signal region can be rejected by the BNN method in the paper, but more fast neutron background events in the signal region are unidentified using the BNN method in the paper. The uncorrelated background to signal ratio and the 8^{8}He/9^{9}Li background to signal ratio are significantly improved using the BNN method in the paper in comparison with the BNN method in Ref.\cite{key-1}. But the fast neutron background to signal ratio in the signal region is a bit larger than the one in Ref.\cite{key-1}.Comment: 9 pages, 1 figure and 1 table, accepted by Journal of Instrumentatio

    Non-Linear Stochastic Equations with Calculable Steady States

    Full text link
    We consider generalizations of the Kardar--Parisi--Zhang equation that accomodate spatial anisotropies and the coupled evolution of several fields, and focus on their symmetries and non-perturbative properties. In particular, we derive generalized fluctuation--dissipation conditions on the form of the (non-linear) equations for the realization of a Gaussian probability density of the fields in the steady state. For the amorphous growth of a single height field in one dimension we give a general class of equations with exactly calculable (Gaussian and more complicated) steady states. In two dimensions, we show that any anisotropic system evolves on long time and length scales either to the usual isotropic strong coupling regime or to a linear-like fixed point associated with a hidden symmetry. Similar results are derived for textural growth equations that couple the height field with additional order parameters which fluctuate on the growing surface. In this context, we propose phenomenological equations for the growth of a crystalline material, where the height field interacts with lattice distortions, and identify two special cases that obtain Gaussian steady states. In the first case compression modes influence growth and are advected by height fluctuations, while in the second case it is the density of dislocations that couples with the height.Comment: 9 pages, revtex
    • …
    corecore