54 research outputs found

    The crossover between lasing and polariton condensation in optical microcavities

    Full text link
    We study a model of a photon mode dipole-coupled to a medium of two-level oscillators in a microcavity in the presence of dephasing processes introduced by coupling to external baths. Decoherence processes can be classified as pair-breaking or non-pair-breaking in analogy with magnetic or non-magnetic impurities in superconductors. In the absence of dephasing, the ground state of the model is a polariton condensate with a gap in the excitation spectrum. Increase of the pair-breaking parameter γ\gamma reduces the gap, which becomes zero at a critical value γC1\gamma_{C1}; for large γ\gamma, the conventional laser regime is obtained in a way that demonstrates its close analogy to a gapless superconductor. In contrast, weak non-pair-breaking processes have no qualitative effect on the condensate or the existence of a gap, although they lead to inhomogeneous broadening of the excitations

    Condensation and Lasing of Microcavity Polaritons: Comparison between two Models

    Full text link
    Condensation of microcavity polaritons and the substantial influence of pair-breaking disorder and decoherence leading to a laser regime has been recently considered using two different models: a model for direct two band excitons in a disordered quantum well coupled to light and a model where the cavity mode couples instead to a medium of localised excitons, represented by two-level oscillators in the presence of dephasing processes. Even if complementary from the point of view of assumptions, the models share most of the main conclusions and show similar phase diagrams. The issue whether excitons are propagating or localised seems secondary for the polariton condensation and the way in which pair-breaking disorder and decoherence processes influence the condensation and drive the microcavity into a lasing regime is, within the approximations used in each model, generic. The reasons for the similarities between the two physical situations are analysed and explained.Comment: Proceeding of the First International Conference on Spontaneous Coherence in Excitonic Systems (ICSCE'04); 7 pages, 2 eps figure

    Branching Transport Model of Alkali-Halide Scintillators

    Full text link
    We measure the time dependence of the scintillator light-emission pulses in NaI(Tl) crystals at different temperatures, after activation by gamma rays. We confirm that there are two main nonexponential components to the time decay and find that their amplitude ratio shows Arrhenius temperature dependence. We explain these nonexponential components as arising from two competing mechanisms of carrier transport to the Tl activation levels. The total light output of the NaI(Tl) detectors shows a linear temperature dependence explained by our model

    Bose condensation in a model microcavity

    Full text link
    We study the equilibrium properties of a system of dipole-active excitons coupled to a single photon mode at fixed total excitation. Treating the presence or absence of a trapped exciton as a two-level system produces a model that is exactly soluble. It gives a simple description of the physics of polariton condensation in optical cavities beyond the low-density bosonic regime.Comment: 5 pages, 3 figures, uses RevTeX and psfig. Revised version: (1)Corrects an error in our treatment of the constraint, leading to a rescaled transition temperature, and (2)Extends our discussion of the relevance of the model to real system

    Effect of a Normal-State Pseudogap on Optical Conductivity in Underdoped Cuprate Superconductors

    Full text link
    We calculate the c-axis infrared conductivity σc(ω)\sigma_c(\omega) in underdoped cuprate superconductors for spinfluctuation exchange scattering within the CuO2_2-planes including a phenomenological d-wave pseudogap of amplitude EgE_g. For temperatures decreasing below a temperature T∗∼Eg/2T^* \sim E_g/2, a gap for ω<2Eg\omega < 2E_g develops in σc(ω)\sigma_c(\omega) in the incoherent (diffuse) transmission limit. The resistivity shows 'semiconducting' behavior, i.e. it increases for low temperatures above the constant behavior for Eg=0E_g=0. We find that the pseudogap structure in the in-plane optical conductivity is about twice as big as in the interplane conductivity σc(ω)\sigma_c(\omega), in qualitative agreement with experiment. This is a consequence of the fact that the spinfluctuation exchange interaction is suppressed at low frequencies as a result of the opening of the pseudogap. While the c-axis conductivity in the underdoped regime is described best by incoherent transmission, in the overdoped regime coherent conductance gives a better description.Comment: to be published in Phys. Rev. B (November 1, 1999

    Thermal Hall conductivity of marginal Fermi liquids subject to out-of plane impurities in high-TcT_c cuprates

    Full text link
    The effect of out-of-plane impurities on the thermal Hall conductivity κxy\kappa_{xy} of in-plane marginal-Fermi-liquid (MFL) quasiparticles in high-TcT_c cuprates is examined by following the work on electrical Hall conductivity σxy\sigma_{xy} by Varma and Abraham [Phys. Rev. Lett. 86, 4652 (2001)]. It is shown that the effective Lorentz force exerted by these impurities is a weak function of energies of the MFL quasiparticles, resulting in nearly the same temperature dependence of κxy/T\kappa_{xy}/T and σxy\sigma_{xy}, indicative of obedience of the Wiedemann-Franz law. The inconsistency of the theoretical result with the experimental one is speculated to be the consequence of the different amounts of out-of-plane impurities in the two YBaCuO samples used for the κxy\kappa_{xy} and σxy\sigma_{xy} measurements.Comment: 5 pages, 2 eps figures; final versio

    Phase locking in quantum and classical oscillators: polariton condensates, lasers, and arrays of Josephson junctions

    Full text link
    We connect three phenomena in which a coherent electromagnetic field could be generated: polariton condensation, phase-locking in arrays of underdamped Josephson junctions, and lasing. All these phenomena have been described using Dicke-type models of spins coupled to a single photon mode. These descriptions may be distinguished by whether the spins are quantum or classical, and whether they are strongly or weakly damped.Comment: 6 pages, RevTex. To appear in a special edition of Solid State Communications on "Quantum Phases at the Nanoscale

    Mass-renormalized electronic excitations at (π\pi, 0) in the superconducting state of Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}

    Full text link
    Using high-resolution angle-resolved photoemission spectroscopy on Bi2Sr2CaCu2O8+δBi_{2}Sr_{2}CaCu_{2}O_{8+\delta}, we have made the first observation of a mass renormalization or "kink" in the E vs. k⃗\vec k dispersion relation localized near (π,0)(\pi, 0). Compared to the kink observed along the nodal direction, this new effect is clearly stronger, appears at a lower energy near 40 meV, and is only present in the superconducting state. The kink energy scale defines a cutoff below which well-defined quasiparticle excitations occur. This effect is likely due to coupling to a bosonic excitation, with the most plausible candidate being the magnetic resonance mode observed in inelastic neutron scattering

    Optical absorption in the strong coupling limit of Eliashberg theory

    Full text link
    We calculate the optical conductivity of superconductors in the strong-coupling limit. In this anomalous limit the typical energy scale is set by the coupling energy, and other energy scales such as the energy of the bosons mediating the attraction are negligibly small. We find a universal frequency dependence of the optical absorption which is dominated by bound states and differs significantly from the weak coupling results. A comparison with absorption spectra of superconductors with enhanced electron-phonon coupling shows that typical features of the strong-coupling limit are already present at intermediate coupling.Comment: 10 pages, revtex, 4 uuencoded figure

    Low-frequency incommensurate magnetic response in strongly correlated systems

    Full text link
    It is shown that in the t-J model of Cu-O planes at low frequencies the dynamic spin structure factor is peaked at incommensurate wave vectors (1/2+-delta,1/2)$, (1/2,1/2+-delta). The incommensurability is connected with the momentum dependencies of the magnon frequency and damping near the antiferromagnetic wave vector. The behavior of the incommensurate peaks is similar to that observed in La_{2-x}(Ba,Sr)_xCuO_{4+y} and YBa_2Cu_3O_{7-y}: for hole concentrations 0.02<x<=0.12 we find that delta is nearly proportional to x, while for x>0.12 it tends to saturation. The incommensurability disappears with increasing temperature. Generally the incommensurate magnetic response is not accompanied by an inhomogeneity of the carrier density.Comment: 4 pages, 4 figure
    • …
    corecore