1,155 research outputs found

    On-line multiobjective automatic control system generation by evolutionary algorithms

    Get PDF
    Evolutionary algorithms are applied to the on- line generation of servo-motor control systems. In this paper, the evolving population of controllers is evaluated at run-time via hardware in the loop, rather than on a simulated model. Disturbances are also introduced at run-time in order to pro- duce robust performance. Multiobjective optimisation of both PI and Fuzzy Logic controllers is considered. Finally an on-line implementation of Genetic Programming is presented based around the Simulink standard blockset. The on-line designed controllers are shown to be robust to both system noise and ex- ternal disturbances while still demonstrating excellent steady- state and dvnamic characteristics

    Strong Effects of Weak Localization in Charge Density Wave/Normal Metal Hybrids

    Full text link
    Collective transport through a multichannel disordered conductor in contact with charge-density-wave electrodes is theoretically investigated. The statistical distribution function of the threshold potential for charge-density wave sliding is calculated by random matrix theory. In the diffusive regime weak localization has a strong effect on the sliding motion.Comment: To be published in Physical Review

    Maxwell - Chern - Simons topologically massive gauge fields in the first-order formalism

    Full text link
    We find the canonical and Belinfante energy-momentum tensors and their nonzero traces. We note that the dilatation symmetry is broken and the divergence of the dilatation current is proportional to the topological mass of the gauge field. It was demonstrated that the gauge field possesses the `scale dimensionality' d=1/2. Maxwell - Chern - Simons topologically massive gauge field theory in 2+1 dimensions is formulated in the first-order formalism. It is shown that 6x6-matrices of the relativistic wave equation obey the Duffin - Kemmer - Petiau algebra. The Hermitianizing matrix of the relativistic wave equation is given. The projection operators extracting solutions of field equations for states with definite energy-momentum and spin are obtained. The 5x5-matrix Schrodinger form of the equation is derived after the exclusion of non-dynamical components, and the quantum-mechanical Hamiltonian is obtained. Projection operators extracting physical states in the Schrodinger picture are found.Comment: 18 pages, correction in Ref. [5

    The non-commutative Landau problem

    Full text link
    The Landau problem is discussed in two similar but still different non-commutative frameworks. The ``standard'' one, where the coupling to the gauge field is achieved using Poisson brackets, yields all Landau levels. The ``exotic'' approach, where the coupling to the gauge field is achieved using the symplectic structure, only yields lowest-Landau level states, as advocated by Peierls and used in the description of the ground states of the Fractional Quantum Hall Effect. The same reduced model also describes vortex dynamics in a superfluid 4{}^4He film. Remarkably, the spectrum depends crucially on the quantization scheme. The system is symmetric w. r. t. area-preserving diffeomorphisms.Comment: Published with shortened title as Ann. Phys. (N. Y.) 299, pp. 128-140 (2002) 14 pages, LaTex, no figure

    Single parameter scaling in 1-D localized absorbing systems

    Get PDF
    Numerical study of the scaling of transmission fluctuations in the 1-D localization problem in the presence of absorption is carried out. Violations of single parameter scaling for lossy systems are found and explained on the basis of a new criterion for different types of scaling behavior derived by Deych et al [Phys. Rev. Lett., {\bf 84}, 2678 (2000)].Comment: 7 pages, 6 figures, RevTex, submitted to Phys. Rev.

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Disappearance of Ensemble-Averaged Josephson Current in Dirty SNS Junctions of d-wave Superconductors

    Full text link
    We discuss the Josephson current in superconductor / dirty normal conductor / superconductor junctions, where the superconductors have dx2y2d_{x^2-y^2} pairing symmetry. The low-temperature behavior of the Josephson current depends on the orientation angle between the crystalline axis and the normal of the junction interface. We show that the ensemble-averaged Josephson current vanishes when the orientation angle is π/4\pi/4 and the normal conductor is in the diffusive transport regime. The dx2y2d_{x^2-y^2}-wave pairing symmetry is responsible for this fact.Comment: 8 pages, 5 figure

    Microvascular Ultrasonic Imaging of Angiogenesis Identifies Tumors in a Murine Spontaneous Breast Cancer Model

    Get PDF
    The purpose of this study is to determine if microvascular tortuosity can be used as an imaging biomarker for the presence of tumor-associated angiogenesis and if imaging this biomarker can be used as a specific and sensitive method of locating solid tumors. Acoustic angiography, an ultrasound-based microvascular imaging technology, was used to visualize angiogenesis development of a spontaneous mouse model of breast cancer (n=48). A reader study was used to assess visual discrimination between image types, and quantitative methods utilized metrics of tortuosity and spatial clustering for tumor detection. The reader study resulted in an area under the curve of 0.8, while the clustering approach resulted in the best classification with an area under the curve of 0.95. Both the qualitative and quantitative methods produced a correlation between sensitivity and tumor diameter. Imaging of vascular geometry with acoustic angiography provides a robust method for discriminating between tumor and healthy tissue in a mouse model of breast cancer. Multiple methods of analysis have been presented for a wide range of tumor sizes. Application of these techniques to clinical imaging could improve breast cancer diagnosis, as well as improve specificity in assessing cancer in other tissues. The clustering approach may be beneficial for other types of morphological analysis beyond vascular ultrasound images

    Isovector part of nuclear energy density functional from chiral two- and three-nucleon forces

    Full text link
    A recent calculation of the nuclear energy density functional from chiral two- and three-nucleon forces is extended to the isovector terms pertaining to different proton and neutron densities. An improved density-matrix expansion is adapted to the situation of small isospin-asymmetries and used to calculate in the Hartree-Fock approximation the density-dependent strength functions associated with the isovector terms. The two-body interaction comprises of long-range multi-pion exchange contributions and a set of contact terms contributing up to fourth power in momenta. In addition, the leading order chiral three-nucleon interaction is employed with its parameters fixed in computations of nuclear few-body systems. With this input one finds for the asymmetry energy of nuclear matter the value A(ρ0)26.5A(\rho_0) \simeq 26.5\,MeV, compatible with existing semi-empirical determinations. The strength functions of the isovector surface and spin-orbit coupling terms come out much smaller than those of the analogous isoscalar coupling terms and in the relevant density range one finds agreement with phenomenological Skyrme forces. The specific isospin- and density-dependences arising from the chiral two- and three-nucleon interactions can be explored and tested in neutron-rich systems.Comment: 14 pages, 7 figures, to be published in European Physical Journal

    Development of a Momentum Determined Electron Beam in the 1 -45 GeV Range

    Get PDF
    A beam line for electrons with energies in the range of 1 to 45 GeV, low contamination of hadrons and muons and high intensity up to 10^6 per accelerator spill at 27 GeV was setup at U70 accelerator in Protvino, Russia. A beam tagging system based on drift chambers with 160 micron resolution was able to measure relative electron beam momentum precisely. The resolution sigma_p p was 0.13% at 45 GeV where multiple scattering is negligible. This test beam setup provided the possibility to study properties of lead tungstate crystals (PbWO_4) for the BTeV experiment at Fermilab.Comment: 12 pages, 8 figures; work done by the BTeV Electromagnetic Calorimeter grou
    corecore