2,428 research outputs found

    Towards flavour diffusion coefficient and electrical conductivity without ultraviolet contamination

    Full text link
    By subtracting from a recent lattice measurement of the thermal vector-current correlator the known 5-loop vacuum contribution, we demonstrate that the remainder is small and shows no visible short-distance divergence. It can therefore in principle be subjected to model-independent analytic continuation. Testing a particular implementation, we obtain estimates for the flavour-diffusion coefficient (2 pi T D \gsim 0.8) and electrical conductivity which are significantly smaller than previous results. Although systematic errors remain beyond control at present, some aspects of our approach could be of a wider applicability.Comment: 7 pages. v2: clarifications added, published versio

    Optimal Hypercontractivity for Fermi Fields and Related Non-Commutative Integration

    Full text link
    Optimal hypercontractivity bounds for the fermion oscillator semigroup are obtained. These are the fermion analogs of the optimal hypercontractivity bounds for the boson oscillator semigroup obtained by Nelson. In the process, several results of independent interest in the theory of non-commutative integration are established. {}.Comment: 18 p., princeton/ecel/7-12-9

    Search for Charge Symmetry Violation in n-p Scattering

    Get PDF
    This work was supported by National Science Foundation Grants PHY 76-84033A01, PHY 78-22774, and Indiana Universit

    The Basics of Water Waves Theory for Analogue Gravity

    Full text link
    This chapter gives an introduction to the connection between the physics of water waves and analogue gravity. Only a basic knowledge of fluid mechanics is assumed as a prerequisite.Comment: 36 pages. Lecture Notes for the IX SIGRAV School on "Analogue Gravity", Como (Italy), May 201

    Beyond the tip of the seamount: Distinct megabenthic communities found beyond the charismatic summit sponge ground on an arctic seamount (Schulz Bank, Arctic Mid-Ocean Ridge)

    Get PDF
    Our understanding of the benthic communities on arctic seamounts and descriptions of such communities in habitat classification systems are limited. In recent years, Schulz Bank (73°52′N 7°30′E), a seamount on the Arctic Mid-Ocean Ridge (AMOR), has become well studied but the work has primarily focused on an arctic sponge ground at the summit. This has compounded a general assumption that the most biologically interesting community is on the summit alone. With the potential threat of deep-sea mining on nearby sites on AMOR, it is crucial to form a baseline understanding of the benthic megafaunal communities not only on the summit, but on the slopes and base of the seamount as well. Using video footage collected by a remotely operated vehicle in 2017 and 2018 to survey the seamount from 2700 to 580 m depth, several distinct megafauna communities on Schulz Bank were identified. Specifically, five biotopes, two of which were dominated by large structure-forming sponges, appeared to follow a depth gradient and change with the type of substrata present. The sponge-dominated communities on the summit and lower slope had the highest average community densities and number of morphotaxa per image compared to the upper slope and seamount base communities. Most notably, sponge-dominated bedrock walls on the lower slopes challenge the assumption that the summit is the most dense and diverse community on Schulz Bank. The results from this study lay the foundation for future research and conservation efforts of arctic sponge grounds by looking beyond the seamount summit to bring a full view of enigmatic sponge dominated ecosystems

    On the equivalence between hierarchical segmentations and ultrametric watersheds

    Get PDF
    We study hierarchical segmentation in the framework of edge-weighted graphs. We define ultrametric watersheds as topological watersheds null on the minima. We prove that there exists a bijection between the set of ultrametric watersheds and the set of hierarchical segmentations. We end this paper by showing how to use the proposed framework in practice in the example of constrained connectivity; in particular it allows to compute such a hierarchy following a classical watershed-based morphological scheme, which provides an efficient algorithm to compute the whole hierarchy.Comment: 19 pages, double-colum

    Machine Learning Logistic Regression Model for Early Decision Making in Referral of Children with Cervical Lymphadenopathy Suspected of Lymphoma

    Get PDF
    While cervical lymphadenopathy is common in children, a decision model for detecting high-grade lymphoma is lacking. Previously reported individual lymphoma-predicting factors and multivariate models were not sufficiently discriminative for clinical application. To develop a diagnostic scoring tool, we collected data from all children with cervical lymphadenopathy referred to our national pediatric oncology center within 30 months (n = 182). Thirty-nine putative lymphoma-predictive factors were investigated. The outcome groups were classical Hodgkin lymphoma (cHL), nodular lymphocyte-predominant Hodgkin lymphoma (NLPHL), non-Hodgkin lymphoma (NHL), other malignancies, and a benign group. We integrated the best univariate predicting factors into a multivariate, machine learning model. Logistic regression allocated each variable a weighing factor. The model was tested in a different patient cohort (n = 60). We report a 12-factor diagnostic model with a sensitivity of 95% (95% CI 89–98%) and a specificity of 88% (95% CI 77–94%) for detecting cHL and NHL. Our 12-factor diagnostic scoring model is highly sensitive and specific in detecting high-grade lymphomas in children with cervical lymphadenopathy. It may enable fast referral to a pediatric oncologist in patients with high-grade lymphoma and may reduce the number of referrals and unnecessary invasive procedures in children with benign lymphadenopathy.</p

    On the application of radio frequency voltages to ion traps via helical resonators

    Full text link
    Ions confined using a Paul trap require a stable, high voltage and low noise radio frequency (RF) potential. We present a guide for the design and construction of a helical coil resonator for a desired frequency that maximises the quality factor for a set of experimental constraints. We provide an in-depth analysis of the system formed from a shielded helical coil and an ion trap by treating the system as a lumped element model. This allows us to predict the resonant frequency and quality factor in terms of the physical parameters of the resonator and the properties of the ion trap. We also compare theoretical predictions with experimental data for different resonators, and predict the voltage applied to the ion trap as a function of the Q-factor, input power and the properties of the resonant circuit
    • …
    corecore