19 research outputs found

    Nucleon form factors with dynamical twisted mass fermions

    Get PDF
    The electromagnetic and axial form factors of the nucleon are evaluated in twisted mass QCD with two degenerate flavors of light, dynamical quarks. The axial charge g_A, magnetic moment and the Dirac and Pauli radii are determined for pion masses in the range 300 MeV to 500 MeV

    Baryon masses from lattice QCD: Beyond the perturbative chiral regime

    Get PDF
    Consideration of the analytic properties of pion-induced baryon self-energies leads to new functional forms for the extrapolation of light baryon masses. These functional forms reproduce the leading non-analytic behavior of chiral perturbation theory, the correct non-analytic behavior at the NπN \pi threshold and the appropriate heavy-quark limit. They involve only three unknown parameters, which may be obtained by fitting to lattice data. Recent dynamical fermion results from CP-PACS and UKQCD are extrapolated using these new functional forms. We also use these functions to probe the limit of applicability of chiral perturbation theory to the extrapolation of lattice QCD results.Derek B. Leinweber, Anthony W. Thomas, Kazuo Tsushima, and Stewart V. Wrigh

    Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

    Full text link
    We have made the first measurements of the virtual Compton scattering (VCS) process via the H(e,ep)γ(e,e'p)\gamma exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the WW-dependence at fixed Q2=1Q^2=1 GeV2^2, and for the Q2Q^2-dependence at fixed WW near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed Q2Q^2-dependence is smooth. The measured ratio of H(e,ep)γ(e,e'p)\gamma to H(e,ep)π0(e,e'p)\pi^0 cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data at the highest WW (1.8-1.9 GeV) show a striking Q2Q^2- independence, which may suggest a transition to a perturbative scattering mechanism at the quark level.Comment: 20 pages, 8 figures. To appear in Phys.Rev.

    Strangeness nuclear physics: a critical review on selected topics

    Get PDF
    Selected topics in strangeness nuclear physics are critically reviewed. This includes production, structure and weak decay of Λ\Lambda--Hypernuclei, the Kˉ\bar K nuclear interaction and the possible existence of Kˉ\bar K bound states in nuclei. Perspectives for future studies on these issues are also outlined.Comment: 63 pages, 51 figures, accepted for publication on European Physical Journal

    Moments of isovector quark distributions from lattice QCD

    Get PDF
    We present a complete analysis of the chiral extrapolation of lattice moments of all twist-2 isovector quark distributions, including corrections from Nπ and Δπ loops. Even though the Δ resonance formally gives rise to higher order non-analytic structure, the coefficients of the higher order terms for the helicity and transversity moments are large and cancel much of the curvature generated by the wave function renormalization. The net effect is that, whereas the unpolarized moments exhibit considerable curvature, the polarized moments show little deviation from linearity as the chiral limit is approached

    Strong evidences of hadron acceleration in Tycho's Supernova Remnant

    Get PDF
    Very recent gamma-ray observations of G120.1+1.4 (Tycho's) supernova remnant (SNR) by Fermi-LAT and VERITAS provided new fundamental pieces of information for understanding particle acceleration and non-thermal emission in SNRs. We want to outline a coherent description of Tycho's properties in terms of SNR evolution, shock hydrodynamics and multi-wavelength emission by accounting for particle acceleration at the forward shock via first order Fermi mechanism. We adopt here a quick and reliable semi-analytical approach to non-linear diffusive shock acceleration which includes magnetic field amplification due to resonant streaming instability and the dynamical backreaction on the shock of both cosmic rays (CRs) and self-generated magnetic turbulence. We find that Tycho's forward shock is accelerating protons up to at least 500 TeV, channelling into CRs about the 10 per cent of its kinetic energy. Moreover, the CR-induced streaming instability is consistent with all the observational evidences indicating a very efficient magnetic field amplification (up to ~300 micro Gauss). In such a strong magnetic field the velocity of the Alfv\'en waves scattering CRs in the upstream is expected to be enhanced and to make accelerated particles feel an effective compression factor lower than 4, in turn leading to an energy spectrum steeper than the standard prediction {\propto} E^-2. This latter effect is crucial to explain the GeV-to-TeV gamma-ray spectrum as due to the decay of neutral pions produced in nuclear collisions between accelerated nuclei and the background gas. The self-consistency of such an hadronic scenario, along with the fact that the concurrent leptonic mechanism cannot reproduce both the shape and the normalization of the detected the gamma-ray emission, represents the first clear and direct radiative evidence that hadron acceleration occurs efficiently in young Galactic SNRs.Comment: Minor changes. Accepted for publication in Astronomy & Astrophysic

    Equation of state of hot dense hyperonic matter in the Quark–Meson-Coupling (QMC-A) model

    No full text
    International audienceWe report a new equation of state (EoS) of cold and hot hyperonic matter constructed in the framework of the quark–meson-coupling (QMC-A) model. The QMC-A EoS yields results compatible with available nuclear physics constraints and astrophysical observations. It covers the range of temperatures from T = 0 to 100 MeV, entropies per particle S/A between 0 and 6, lepton fractions from Y_L = 0.0 to 0.6, and baryon number densities n_B = 0.05–1.2 fm^−3. Applications of the QMC-A EoS are made to cold neutron stars (NSs) and to hot proto-neutron stars (PNSs) in two scenarios: (i) lepton-rich matter with trapped neutrinos (PNS-I) and (ii) deleptonized chemically equilibrated matter (PNS-II). We find that the QMC-A model predicts hyperons in amounts growing with increasing temperature and density, thus suggesting not only their presence in PNS but also, most likely, in NS merger remnants. The nucleon–hyperon phase transition is studied through the adiabatic index and the speed of sound c_s. We observe that the lowering of (c_s/c)^2 to and below the conformal limit of 1/3 is strongly correlated with the onset of hyperons. Rigid rotation of cold and hot stars, their moments of inertia and Kepler frequencies are also explored. The QMC-A model results are compared with two relativistic models, the chiral mean field model (CMF), and the generalized relativistic density functional (GRDF) with DD2 (nucleon-only) and DD2Y-T (full baryon octet) interactions. Similarities and differences are discussed

    Constraints and excited states of the bag

    No full text
    SIGLECNRS RP 120 (143) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Nucleon form factors and moments of parton distributions in twisted mass lattice QCD

    No full text
    The proceedings of the conference will be published in the on-line journal "Proceedings of Science".International audienc

    A non-static bag model for the Roper resonances

    No full text
    SIGLECNRS RP 120 (144) / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc
    corecore