4,468 research outputs found

    Scaling law of Wolff cluster surface energy

    Full text link
    We study the scaling properties of the clusters grown by the Wolff algorithm on seven different Sierpinski-type fractals of Hausdorff dimension 1<df31 < d_f \le 3 in the framework of the Ising model. The mean absolute value of the surface energy of Wolff cluster follows a power law with respect to the lattice size. Moreover, we investigate the probability density distribution of the surface energy of Wolff cluster and are able to establish a new scaling relation. It enables us to introduce a new exponent associated to the surface energy of Wolff cluster. Finally, this new exponent is linked to a dynamical exponent via an inequality.Comment: 12 pages, 3 figures. To appear in PR

    Quantitation of buried contamination by use of solvents

    Get PDF
    Experiments directed at determining the potential of reclaimed silicone polymers for reuse are described

    Quantitation of buried contamination by use of solvents

    Get PDF
    Spore recovery form cured silicone potting compounds using amine solvents to degrade the cured polymers was investigated. A complete list of solvents and a description of the effect of each on two different silicone polymers is provided

    Critical Behavior of the Ferromagnetic Ising Model on a Sierpinski Carpet: Monte Carlo Renormalization Group Study

    Full text link
    We perform a Monte Carlo Renormalization Group analysis of the critical behavior of the ferromagnetic Ising model on a Sierpi\'nski fractal with Hausdorff dimension df1.8928d_f\simeq 1.8928. This method is shown to be relevant to the calculation of the critical temperature TcT_c and the magnetic eigen-exponent yhy_h on such structures. On the other hand, scaling corrections hinder the calculation of the temperature eigen-exponent yty_t. At last, the results are shown to be consistent with a finite size scaling analysis.Comment: 16 pages, 7 figure

    Critical behavior of the 3-state Potts model on Sierpinski carpet

    Full text link
    We study the critical behavior of the 3-state Potts model, where the spins are located at the centers of the occupied squares of the deterministic Sierpinski carpet. A finite-size scaling analysis is performed from Monte Carlo simulations, for a Hausdorff dimension dfd_{f} 1.8928\simeq 1.8928. The phase transition is shown to be a second order one. The maxima of the susceptibility of the order parameter follow a power law in a very reliable way, which enables us to calculate the ratio of the exponents γ/ν\gamma /\nu. We find that the scaling corrections affect the behavior of most of the thermodynamical quantities. However, the sequence of intersection points extracted from the Binder's cumulant provides bounds for the critical temperature. We are able to give the bounds for the exponent 1/ν1/\nu as well as for the ratio of the exponents β/ν\beta/\nu, which are compatible with the results calculated from the hyperscaling relation.Comment: 13 pages, 4 figure

    Coherent-State Approach to Two-dimensional Electron Magnetism

    Full text link
    We study in this paper the possible occurrence of orbital magnetim for two-dimensional electrons confined by a harmonic potential in various regimes of temperature and magnetic field. Standard coherent state families are used for calculating symbols of various involved observables like thermodynamical potential, magnetic moment, or spatialdistribution of current. Their expressions are given in a closed form and the resulting Berezin-Lieb inequalities provide a straightforward way to study magnetism in various limit regimes. In particular, we predict a paramagnetic behaviour in the thermodynamical limit as well as in the quasiclassical limit under a weak field. Eventually, we obtain an exact expression for the magnetic moment which yields a full description of the phase diagram of the magnetization.Comment: 21 pages, 6 figures, submitted to PR

    Near-IR studies of recurrent nova V745 Scorpii during its 2014 outburst

    Full text link
    The recurrent nova (RN) V745 Scorpii underwent its third known outburst on 2014 February 6. Infrared monitoring of the eruption on an almost daily basis, starting from 1.3d after discovery, shows the emergence of a powerful blast wave generated by the high velocity nova ejecta exceeding 4000 kms1^{-1} plowing into its surrounding environment. The temperature of the shocked gas is raised to a high value exceeding 108^{8}K immediately after outburst commencement. The energetics of the outburst clearly surpass those of similar symbiotic systems like RS Oph and V407 Cyg which have giant secondaries. The shock does not show a free-expansion stage but rather shows a decelerative Sedov-Taylor phase from the beginning. Such strong shockfronts are known to be sites for γ\gamma ray generation. V745 Sco is the latest nova, apart from five other known novae, to show γ\gamma ray emission. It may be an important testbed to resolve the crucial question whether all novae are generically γ\gamma ray emitters by virtue of having a circumbinary reservoir of material that is shocked by the ejecta rather than γ\gamma ray generation being restricted to only symbiotic systems with a shocked red giant (RG) wind. The lack of a free-expansion stage favors V745 Sco to have a density enhancement around the white dwarf (WD), above that contributed by a RG wind. Our analysis also suggests that the WD in V745 Sco is very massive and a potential progenitor for a future SN Ia explosion.Comment: To appear in ApJ (Letters

    Polymers grafted to porous membranes

    Full text link
    We study a single flexible chain molecule grafted to a membrane which has pores of size slightly larger than the monomer size. On both sides of the membrane there is the same solvent. When this solvent is good, i.e. when the polymer is described by a self avoiding walk, it can fairly easily penetrate the membrane, so that the average number of membrane crossings tends, for chain length NN\to\infty, to a positive constant. The average numbers of monomers on either side of the membrane diverges in this limit, although their ratio becomes infinite. For a poor solvent, in contrast, the entire polymer is located, for large NN, on one side of the membrane. For good and for theta solvents (ideal polymers) we find scaling laws, whose exponents can in the latter case be easily understood from the behaviour of random walks.Comment: 4 pages, 6 figure

    Static and dynamic properties of large polymer melts in equilibrium

    Full text link
    We present a detailed study of the static and dynamic behavior of long semiflexible polymer chains in a melt. Starting from previously obtained fully equilibrated high molecular weight polymer melts [{\it Zhang et al.} ACS Macro Lett. 3, 198 (2014)] we investigate their static and dynamic scaling behavior as predicted by theory. We find that for semiflexible chains in a melt, results of the mean square internal distance, the probability distributions of the end-to-end distance, and the chain structure factor are well described by theoretical predictions for ideal chains. We examine the motion of monomers and chains by molecular dynamics simulations using the ESPResSo++ package. The scaling predictions of the mean squared displacement of inner monomers, center of mass, and relations between them based on the Rouse and the reptation theory are verified, and related characteristic relaxation times are determined. Finally we give evidence that the entanglement length Ne,PPAN_{e,PPA} as determined by a primitive path analysis (PPA) predicts a plateau modulus, GN0=45(ρkBT/Ne)G_N^0=\frac{4}{5}(\rho k_BT/N_e), consistent with stresses obtained from the Green-Kubo relation. These comprehensively characterized equilibrium structures, which offer a good compromise between flexibility, small NeN_e, computational efficiency, and small deviations from ideality provide ideal starting states for future non-equilibrium studies.Comment: 13 pages, 10 figures, to be published in J. Chem. Phys. (2016
    corecore