7,338 research outputs found

    Influence of the r-mode instability on hypercritically accreting neutron stars

    Get PDF
    We have investigated an influence of the r-mode instability on hypercritically accreting (M˙∼1M⊙y−1\dot{M}\sim 1M_\odot {y}^{-1}) neutron stars in close binary systems during their common envelope phases based on the scenario proposed by Bethe et al. \shortcite{bethe-brown-lee}. On the one hand neutron stars are heated by the accreted matter at the stellar surface, but on the other hand they are also cooled down by the neutrino radiation. At the same time, the accreted matter transports its angular momentum and mass to the star. We have studied the evolution of the stellar mass, temperature and rotational frequency. The gravitational-wave-driven instability of the r-mode oscillation strongly suppresses spinning-up of the star, whose final rotational frequency is well below the mass-shedding limit, typically as small as 10% of that of the mass-shedding state. On a very short time scale the rotational frequency tends to approach a certain constant value and saturates there as far as the amount of the accreted mass does not exceed a certain limit to collapse to a black hole. This implies that the similar mechanism of gravitational radiation as the so-called Wagoner star may work in this process. The star is spun up by accretion until the angular momentum loss by gravitational radiation balances the accretion torque. The time-integrated dimensionless strain of the radiated gravitational wave may be large enough to be detectable by the gravitational wave detectors such as LIGO II.Comment: 6 pages, 3 figure

    Two types of softening detected in X-ray afterglows of Swift bursts: internal and external shock origins?

    Full text link
    The softening process observed in the steep decay phase of early X-ray afterglows of Swift bursts has remained a puzzle since its discovery. The softening process can also be observed in the later phase of the bursts and its cause has also been unknown. Recently, it was suggested that, influenced by the curvature effect, emission from high latitudes would shift the Band function spectrum from higher energy band to lower band, and this would give rise to the observed softening process accompanied by a steep decay of the flux density. The curvature effect scenario predicts that the terminating time of the softening process would be correlated with the duration of the process. In this paper, based on the data from the UNLV GRB group web-site, we found an obvious correlation between the two quantities. In addition, we found that the softening process can be divided into two classes: the early type softening (ts,max≤"4000"st_{s,max}\leq "4000"s) and the late type softening (ts,max>"4000"st_{s,max} > "4000"s). The two types of softening show different behaviors in the duration vs. terminating time plot. In the relation between the variation rates of the flux density and spectral index during the softening process, a discrepancy between the two types of softening is also observed. According to their time scales and the discrepancy between them, we propose that the two types are of different origins: the early type is of internal shock origin and the late type is of external shock origin. The early softening is referred to the steep decay just following the prompt emission, whereas the late decay typically conceives the transition from flat decay to late afterglow decay. We suspect that there might be a great difference of the Lorentz factor in two classes which is responsible for the observed discrepancy.Comment: 20 pages, 5 figures, 2 tables, Accepted for Publication to Journal of Cosmology and Astroparticle Physics (JCAP

    Wave Energy Amplification in a Metamaterial based Traveling Wave Structure

    Full text link
    We consider the interaction between a particle beam and a propagating electromagnetic wave in the presence of a metamaterial. We show that the introduction of a metamaterial gives rise to a novel dispersion curve which determines a unique wave particle relationship, via the frequency dependence of the metamaterial and the novel ability of metamaterials to exhibit simultaneous negative permittivity and permeability. Using a modified form of Madey's theorem we find that the novel dispersion of the metamaterial leads to a amplification of the EM wave power

    Fluorescent oxide nanoparticles adapted to active tips for near-field optics

    Full text link
    We present a new kind of fluorescent oxide nanoparticles with properties well suited to active-tip based near-field optics. These particles with an average diameter in the range 5-10 nm are produced by Low Energy Cluster Beam Deposition (LECBD) from a YAG:Ce3+ target. They are studied by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), classical photoluminescence, cathodoluminescence and near-field scanning optical microscopy (NSOM). Particles of extreme photo-stability as small as 10 nm in size are observed. These emitters are validated as building blocks of active NSOM tips by coating a standard optical tip with a 10 nm thick layer of YAG:Ce3+ particles directly in the LECBD reactor and by subsequently performing NSOM imaging of test surfaces.Comment: Changes made following Referee's comments; added references; one added figure. See story on this article at: http://nanotechweb.org/cws/article/tech/3606

    Circumstellar Na I and Ca II lines in type IIP supernovae and SN 1998S

    Full text link
    We study a possibility of detection of circumstellar absorption lines of Na I D1,2_{1,2} and Ca II H,K in spectra of type IIP supernovae at the photospheric epoch. The modelling shows that the circumstellar lines of Na I doublet will not be seen in type IIP supernovae for moderate wind density, e.g., characteristic of SN 1999em, whereas rather pronounced Ca II lines with P Cygni profile should be detectable. A similar model is used to describe Na I and Ca II circumstellar lines seen in SN 1998S, type IIL with a dense wind. We show that line intensities in this supernova are reproduced, if one assumes an ultraviolet excess, which is caused primarily by the comptonization of supernova radiation in the shock wave.Comment: To be published in Astronomy Letter

    Dynamic Evolution Model of Isothermal Voids and Shocks

    Full text link
    We explore self-similar hydrodynamic evolution of central voids embedded in an isothermal gas of spherical symmetry under the self-gravity. More specifically, we study voids expanding at constant radial speeds in an isothermal gas and construct all types of possible void solutions without or with shocks in surrounding envelopes. We examine properties of void boundaries and outer envelopes. Voids without shocks are all bounded by overdense shells and either inflows or outflows in the outer envelope may occur. These solutions, referred to as type X\mathcal{X} void solutions, are further divided into subtypes XI\mathcal{X}_{\rm I} and XII\mathcal{X}_{\rm II} according to their characteristic behaviours across the sonic critical line (SCL). Void solutions with shocks in envelopes are referred to as type Z\mathcal{Z} voids and can have both dense and quasi-smooth edges. Asymptotically, outflows, breezes, inflows, accretions and static outer envelopes may all surround such type Z\mathcal{Z} voids. Both cases of constant and varying temperatures across isothermal shock fronts are analyzed; they are referred to as types ZI\mathcal{Z}_{\rm I} and ZII\mathcal{Z}_{\rm II} void shock solutions. We apply the `phase net matching procedure' to construct various self-similar void solutions. We also present analysis on void generation mechanisms and describe several astrophysical applications. By including self-gravity, gas pressure and shocks, our isothermal self-similar void (ISSV) model is adaptable to various astrophysical systems such as planetary nebulae, hot bubbles and superbubbles in the interstellar medium as well as supernova remnants.Comment: 24 pages, 13 figuers, accepted by ApS

    Hubble Space Telescope WFPC2 Imaging of SN 1979C and Its Environment

    Get PDF
    The locations of supernovae in the local stellar and gaseous environment in galaxies contain important clues to their progenitor stars. As part of a program to study the environments of supernovae using Hubble Space Telescope (HST) imaging data, we have examined the environment of the Type II-L SN 1979C in NGC 4321 (M100). We place more rigorous constraints on the mass of the SN progenitor, which may have had a mass M \approx 17--18 M_sun. Moreover, we have recovered and measured the brightness of SN 1979C, m=23.37 in F439W (~B; m_B(max) = 11.6), 17 years after explosion. .Comment: 18 pages, 8 figures, submitted to PAS

    Combining hydrology and mosquito population models to identify the drivers of Rift Valley fever emergence in semi-arid regions of West Africa

    Get PDF
    BACKGROUND: Rift Valley fever (RVF) is a vector-borne viral zoonosis of increasing global importance. RVF virus (RVFV) is transmitted either through exposure to infected animals or through bites from different species of infected mosquitoes, mainly of Aedes and Culex genera. These mosquitoes are very sensitive to environmental conditions, which may determine their presence, biology, and abundance. In East Africa, RVF outbreaks are known to be closely associated with heavy rainfall events, unlike in the semi-arid regions of West Africa where the drivers of RVF emergence remain poorly understood. The assumed importance of temporary ponds and rainfall temporal distribution therefore needs to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: A hydrological model is combined with a mosquito population model to predict the abundance of the two main mosquito species (Aedes vexans and Culex poicilipes) involved in RVFV transmission in Senegal. The study area is an agropastoral zone located in the Ferlo Valley, characterized by a dense network of temporary water ponds which constitute mosquito breeding sites. The hydrological model uses daily rainfall as input to simulate variations of pond surface areas. The mosquito population model is mechanistic, considers both aquatic and adult stages and is driven by pond dynamics. Once validated using hydrological and entomological field data, the model was used to simulate the abundance dynamics of the two mosquito species over a 43-year period (1961–2003). We analysed the predicted dynamics of mosquito populations with regards to the years of main outbreaks. The results showed that the main RVF outbreaks occurred during years with simultaneous high abundances of both species. CONCLUSION/SIGNIFICANCE: Our study provides for the first time a mechanistic insight on RVFV transmission in West Africa. It highlights the complementary roles of Aedes vexans and Culex poicilipes mosquitoes in virus transmission, and recommends the identification of rainfall patterns favourable for RVFV amplification
    • …
    corecore