188 research outputs found

    f(R) theories

    Get PDF
    Over the past decade, f(R) theories have been extensively studied as one of the simplest modifications to General Relativity. In this article we review various applications of f(R) theories to cosmology and gravity - such as inflation, dark energy, local gravity constraints, cosmological perturbations, and spherically symmetric solutions in weak and strong gravitational backgrounds. We present a number of ways to distinguish those theories from General Relativity observationally and experimentally. We also discuss the extension to other modified gravity theories such as Brans-Dicke theory and Gauss-Bonnet gravity, and address models that can satisfy both cosmological and local gravity constraints.Comment: 156 pages, 14 figures, Invited review article in Living Reviews in Relativity, Published version, Comments are welcom

    Network Homophily and the Evolution of the Pay-It-Forward Reciprocity

    Get PDF
    The pay-it-forward reciprocity is a type of cooperative behavior that people who have benefited from others return favors to third parties other than the benefactors, thus pushing forward a cascade of kindness. The phenomenon of the pay-it-forward reciprocity is ubiquitous, yet how it evolves to be part of human sociality has not been fully understood. We develop an evolutionary dynamics model to investigate how network homophily influences the evolution of the pay-it-forward reciprocity. Manipulating the extent to which actors carrying the same behavioral trait are linked in networks, the computer simulation model shows that strong network homophily helps consolidate the adaptive advantage of cooperation, yet introducing some heterophily to the formation of network helps advance cooperation's scale further. Our model enriches the literature of inclusive fitness theory by demonstrating the conditions under which cooperation or reciprocity can be selected for in evolution when social interaction is not confined exclusively to relatives

    Evaluation of metals that are potentially toxic to agricultural surface soils, using statistical analysis, in northwestern Saudi Arabia

    Get PDF
    © 2015, Springer-Verlag Berlin Heidelberg. Heavy metals in agricultural soils enter the food chain when taken up by plants. The main purpose of this work is to determine metal contamination in agricultural farms in northwestern Saudi Arabia. Fifty surface soil samples were collected from agricultural areas. The study focuses on the geochemical behavior of As, Cd, Co, Cr, Cu, Hg, Pb and Zn, and determines the enrichment factor and geoaccumulation index. Multivariate statistical analysis, including principle component analysis and cluster analysis, is also applied to the acquired data. The study shows considerable variation in the concentrations of the analyzed metals in the studied soil samples. This variation in concentration is attributed to the intensity of agricultural activities and, possibly, to nearby fossil fuel combustion activities, as well as to traffic flows from highways and local roads. Multivariate analysis suggests that As, Cd, Hg and Pb are associated with anthropogenic activities, whereas Co, Cr, Cu and Zn are mainly controlled by geogenic activities. Hg and Pb show the maximum concentration in the analyzed samples as compared to the background concentration

    Human Sirt-1: Molecular Modeling and Structure-Function Relationships of an Unordered Protein

    Get PDF
    BACKGROUND: Sirt-1 is a NAD+-dependent nuclear deacetylase of 747 residues that in mammals is involved in various important metabolic pathways, such as glucose metabolism and insulin secretion, and often works on many different metabolic substrates as a multifunctional protein. Sirt-1 down-regulates p53 activity, rising lifespan, and cell survival; it also deacetylases peroxisome proliferator-activated receptor-gamma (PPAR-gamma) and its coactivator 1 alpha (PGC-1alpha), promoting lipid mobilization, positively regulating insulin secretion, and increasing mitochondrial dimension and number. Therefore, it has been implicated in diseases such as diabetes and the metabolic syndrome and, also, in the mechanisms of longevity induced by calorie restriction. Its whole structure is not yet experimentally determined and the structural features of its allosteric site are unknown, and no information is known about the structural changes determined by the binding of its allosteric effectors. METHODOLOGY: In this study, we modelled the whole three-dimensional structure of Sirt-1 and that of its endogenous activator, the nuclear protein AROS. Moreover, we modelled the Sirt-1/AROS complex in order to study the structural basis of its activation and regulation. CONCLUSIONS: Amazingly, the structural data show that Sirt-1 is an unordered protein with a globular core and two large unordered structural regions at both termini, which play an important role in the protein-protein interaction. Moreover, we have found on Sirt-1 a conserved pharmacophore pocket of which we have discussed the implication

    A multicomponent intervention for the management of chronic pain in older adults: study protocol for a randomized controlled trial

    Get PDF
    Background: Studies have shown that physical interventions and psychological methods based on the cognitive behavioral approach are efficacious in alleviating pain and that combining both tends to yield more benefits than either intervention alone. In view of the aging population with chronic pain and the lack of evidence-based pain management programs locally, we developed a multicomponent intervention incorporating physical exercise and cognitive behavioral techniques and examined its long-term effects against treatment as usual (i.e., pain education) in older adults with chronic musculoskeletal pain in Hong Kong. Methods/design: We are conducting a double-blind, cluster-randomized controlled trial. A sample of 160 participants aged ≥ 60 years will be recruited from social centers or outpatient clinics and will be randomized on the basis of center/clinic to either the multicomponent intervention or the pain education program. Both interventions consist of ten weekly sessions of 90 minutes each. The primary outcome is pain intensity, and the secondary outcomes include pain interference, pain persistence, pain self-efficacy, pain coping, pain catastrophizing cognitions, health-related quality of life, depressive symptoms, and hip and knee muscle strength. All outcome measures will be collected at baseline, postintervention, and at 3 and 6 months follow-up. Intention-to-treat analysis will be performed using mixed-effects regression to see whether the multicomponent intervention alleviates pain intensity and associated outcomes over and above the effects of pain education (i.e., a treatment × time intervention effect). Discussion: Because the activities included in the multicomponent intervention were carefully selected for ready implementation by allied health professionals in general, the results of this study, if positive, will make available an efficacious, nonpharmacological pain management program that can be widely adopted in clinical and social service settings and will hence improve older people’s access to pain management services

    Malignant germ cell tumours of childhood: new associations of genomic imbalance

    Get PDF
    Malignant germ cell tumours (MGCTs) of childhood are a rare group of neoplasms that comprise many histological subtypes and arise at numerous different sites. Genomic imbalances have been described in these tumours but, largely because of the paucity of cases reported in the literature, it is unclear how they relate to abnormalities in adult MGCTs and impact on potential systems for classifying GCTs. We have used metaphase-based comparative genomic hybridisation to analyse the largest series of paediatric MGCTs reported to date, representing 34 primary tumours (22 yolk sac tumours (YSTs), 11 germinomatous tumours and one metastatic embryonal carcinoma) occurring in children from birth to age 16, including 17 ovarian MGCTs. The large dataset enabled us to undertake statistical analysis, with the aim of identifying associations worthy of further investigation between patterns of genomic imbalance and clinicopathological parameters. The YSTs showed an increased frequency of 1p- (P=0.003), 3p+ (P=0.02), 4q− (P=0.07) and 6q− (P=0.004) compared to germinomatous tumours. Gain of 12p, which is invariably seen in adult MGCTs, was present in 53% of primary MGCTs of children aged 5–16 and was also observed in four of 14 YSTs affecting children less than 5. Two of these cases (14% of MGCTs in children less than 5) showed gain of the 12p11 locus considered to be particularly relevant in adult MGCTs. Gain of 12p showed a significant association with gain of 12q. Conversely, MGCTs without 12p gain displayed a significantly increased frequency of loss on 16p (P=0.04), suggesting that this imbalance may contribute to tumour development in such cases. This data provides new insight into the biology of this under-investigated tumour group and will direct future studies on the significance of specific genetic abnormalities

    Conservation of energy-momentum of matter as the basis for the gauge theory of gravitation

    Full text link
    According to Yang \& Mills (1954), a {\it conserved} current and a related rigid (`global') symmetry lie at the foundations of gauge theory. When the rigid symmetry is extended to a {\it local} one, a so-called gauge symmetry, a new interaction emerges as gauge potential AA; its field strength is FcurlAF\sim {\rm curl} A. In gravity, the conservation of the energy-momentum current of matter and the rigid translation symmetry in the Minkowski space of special relativity lie at the foundations of a gravitational gauge theory. If the translation invariance is made local, a gravitational potential ϑ\vartheta arises together with its field strength TcurlϑT\sim {\rm curl}\,\vartheta. Thereby the Minkowski space deforms into a Weitzenb\"ock space with nonvanishing torsion TT but vanishing curvature. The corresponding theory is reviewed and its equivalence to general relativity pointed out. Since translations form a subgroup of the Poincar\'e group, the group of motion of special relativity, one ought to straightforwardly extend the gauging of the translations to the gauging of full Poincar\'e group thereby also including the conservation law of the {\it angular momentum} current. The emerging Poincar\'e gauge (theory of) gravity, starting from the viable Einstein-Cartan theory of 1961, will be shortly reviewed and its prospects for further developments assessed.Comment: 46 pages, 4 figures, minor corrections, references added, contribution to "One Hundred Years of Gauge Theory" edited by S. De Bianchi and C. Kiefe

    Varying constants, Gravitation and Cosmology

    Get PDF
    Fundamental constants are a cornerstone of our physical laws. Any constant varying in space and/or time would reflect the existence of an almost massless field that couples to matter. This will induce a violation of the universality of free fall. It is thus of utmost importance for our understanding of gravity and of the domain of validity of general relativity to test for their constancy. We thus detail the relations between the constants, the tests of the local position invariance and of the universality of free fall. We then review the main experimental and observational constraints that have been obtained from atomic clocks, the Oklo phenomenon, Solar system observations, meteorites dating, quasar absorption spectra, stellar physics, pulsar timing, the cosmic microwave background and big bang nucleosynthesis. At each step we describe the basics of each system, its dependence with respect to the constants, the known systematic effects and the most recent constraints that have been obtained. We then describe the main theoretical frameworks in which the low-energy constants may actually be varying and we focus on the unification mechanisms and the relations between the variation of different constants. To finish, we discuss the more speculative possibility of understanding their numerical values and the apparent fine-tuning that they confront us with.Comment: 145 pages, 10 figures, Review for Living Reviews in Relativit
    corecore