96 research outputs found
Epicatechin Stimulates Mitochondrial Activity and Selectively Sensitizes Cancer Cells to Radiation
Radiotherapy is the treatment of choice for solid tumors including pancreatic cancer, but the effectiveness of treatment is limited by radiation resistance. Resistance to chemotherapy or radiotherapy is associated with reduced mitochondrial respiration and drugs that stimulate mitochondrial respiration may decrease radiation resistance. The objectives of this study were to evaluate the potential of (-)-epicatechin to stimulate mitochondrial respiration in cancer cells and to selectively sensitize cancer cells to radiation. We investigated the natural compound (-)-epicatechin for effects on mitochondrial respiration and radiation resistance of pancreatic and glioblastoma cancer cells using a Clark type oxygen electrode, clonogenic survival assays, and Western blot analyses. (-)-Epicatechin stimulated mitochondrial respiration and oxygen consumption in Panc-1 cells. Human normal fibroblasts were not affected. (-)-Epicatechin sensitized Panc-1, U87, and MIA PaCa-2 cells with an average radiation enhancement factor (REF) of 1.7, 1.5, and 1.2, respectively. (-)-Epicatechin did not sensitize normal fibroblast cells to ionizing radiation with a REF of 0.9, suggesting cancer cell selectivity. (-)-Epicatechin enhanced Chk2 phosphorylation and p21 induction when combined with radiation in cancer, but not normal, cells. Taken together, (-)-epicatechin radiosensitized cancer cells, but not normal cells, and may be a promising candidate for pancreatic cancer treatment when combined with radiation
Smoking is Associated with Hypermethylation of the APC 1A Promoter in Colorectal Cancer: the ColoCare Study
Smoking tobacco is a known risk factor for the development of colorectal cancer, and for mortality associated with the disease. While smoking has been reported to be associated with changes in DNA methylation in blood and in lung tumour tissues, there has been scant investigation of how epigenetic factors may be implicated in the increased risk of developing colorectal cancer. To identify epigenetic changes associated with smoking behaviours, we performed epigenome-wide analysis of DNA methylation in colorectal tumours from 36 never smokers, 47 former smokers and 13 active smokers, and adjacent mucosa from 49 never smokers, 64 former smokers and 18 active smokers. Our analyses identified 15 CpG sites within the APC 1A promoter that were significantly hypermethylated and 14 CpG loci within the NFATC1 gene body that were significantly hypomethylated (pLIS<1x10-5) in tumours of active smokers. The APC 1A promoter was hypermethylated in 7 of 36 tumours from never smokers (19%), 12 of 47 tumours from former smokers (26%), and 8 of 13 tumours from active smokers (62%). Promoter hypermethylation was positively associated with duration of smoking (Spearman rank correlation, =0.26, p=0.03) and was confined to tumours, with hypermethylation never observed in adjacent mucosa. Further analysis of adjacent mucosa revealed significant hypomethylation of four loci associated with the TNXB gene in tissue from active smokers. Our findings provide exploratory evidence for hypermethylation of the key tumour suppressor gene APC being implicated in smoking-associated colorectal carcinogenesis. Further work is required to establish the validity of our observations in independent cohorts
Polybrene Inhibits Human Mesenchymal Stem Cell Proliferation during Lentiviral Transduction
Human mesenchymal stem cells (hMSCs) can be engineered to express specific genes, either for their use in cell-based therapies or to track them in vivo over long periods of time. To obtain long-term expression of these genes, a lentivirus- or retrovirus-mediated cell transduction is often used. However, given that the efficiency with these viruses is typically low in primary cells, additives such as polybrene are always used for efficient viral transduction. Unfortunately, as presented here, exposure to polybrene alone at commonly used concentratons (1–8 µg/mL) negatively impacts hMSC proliferation in a dose-dependent manner as measured by CyQUANT, EdU incorporation, and cell cycle analysis. This inhibition of proliferation was observable in culture even 3 weeks after exposure. Culturing the cells in the presence of FGF-2, a potent mitogen, did not abrogate this negative effect of polybrene. In fact, the normally sharp increase in hMSC proliferation that occurs during the first days of exposure to FGF-2 was absent at 4 µg/mL or higher concentrations of polybrene. Similarly, the effect of stimulating cell proliferation under simulated hypoxic conditions was also decreased when cells were exposed to polybrene, though overall proliferation rates were higher. The negative influence of polybrene was, however, reduced when the cells were exposed to polybrene for a shorter period of time (6 hr vs 24 hr). Thus, careful evaluation should be done when using polybrene to aid in lentiviral transduction of human MSCs or other primary cells, especially when cell number is critical
LEDGF/p75-Independent HIV-1 Replication Demonstrates a Role for HRP-2 and Remains Sensitive to Inhibition by LEDGINs
Lens epithelium–derived growth factor (LEDGF/p75) is a cellular cofactor of HIV-1 integrase (IN) that interacts with IN through its IN binding domain (IBD) and tethers the viral pre-integration complex to the host cell chromatin. Here we report the generation of a human somatic LEDGF/p75 knockout cell line that allows the study of spreading HIV-1 infection in the absence of LEDGF/p75. By homologous recombination the exons encoding the LEDGF/p75 IBD (exons 11 to 14) were knocked out. In the absence of LEDGF/p75 replication of laboratory HIV-1 strains was severely delayed while clinical HIV-1 isolates were replication-defective. The residual replication was predominantly mediated by the Hepatoma-derived growth factor related protein 2 (HRP-2), the only cellular protein besides LEDGF/p75 that contains an IBD. Importantly, the recently described IN-LEDGF/p75 inhibitors (LEDGINs) remained active even in the absence of LEDGF/p75 by blocking the interaction with the IBD of HRP-2. These results further support the potential of LEDGINs as allosteric integrase inhibitors
HIV infection of non-dividing cells: a divisive problem
Understanding how lentiviruses can infect terminally differentiated, non-dividing cells has proven a very complex and controversial problem. It is, however, a problem worth investigating, for it is central to HIV-1 transmission and AIDS pathogenesis. Here I shall attempt to summarise what is our current understanding for HIV-1 infection of non-dividing cells. In some cases I shall also attempt to make sense of controversies in the field and advance one or two modest proposals
Role of PSIP1/LEDGF/p75 in lentiviral infectivity and integration targeting
To replicate, lentiviruses such as HIV must integrate DNA copies of their RNA genomes into host cell chromosomes. Lentiviral integration is favored in active transcription units, which allows efficient viral gene expression after integration, but the mechanisms directing integration targeting are incompletely understood. A cellular protein, PSIP1/LEDGF/p75, binds tightly to the lentiviral-encoded integrase protein (IN), and has been reported to be important for HIV infectivity and integration targeting.Here we report studies of lentiviral integration targeting in 1) human cells with intensified RNAi knockdowns of PSIP1/LEDGF/p75, and 2) murine cells with homozygous gene trap mutations in the PSIP1/LEDGF/p75 locus. Infections with vectors derived from equine infections anemia virus (EIAV) and HIV were compared. Integration acceptor sites were analyzed by DNA bar coding and pyrosequencing.In both PSIP1/LEDGF/p75-depleted cell lines, reductions were seen in lentiviral infectivity compared to controls. For the human cells, integration was reduced in transcription units in the knockdowns, and this reduction was greater than in our previous studies of human cells less completely depleted for PSIP1/LEDGF/p75. For the homozygous mutant mouse cells, similar reductions in integration in transcription units were seen, paralleling a previous study of a different mutant mouse line. Integration did not become random, however-integration in transcription units in both cell types was still favored, though to a reduced degree. New trends also appeared, including favored integration near CpG islands. In addition, we carried out a bioinformatic study of 15 HIV integration site data sets in different cell types, which showed that the frequency of integration in transcription units was correlated with the cell-type specific levels of PSIP1/LEDGF/p75 expression
Importin 7 May Be Dispensable for Human Immunodeficiency Virus Type 1 and Simian Immunodeficiency Virus Infection of Primary Macrophages
In an in vitro assay employing reconstituted nuclei, importin 7 (IPO7) has been implicated in nuclear translocation of human immunodeficiency virus type 1 (HIV-1) cDNA. Using RNA interference technology, we inhibited expression of IPO7 by 80 to 95% in primary macrophages and in HeLa cells and monitored their ability to support HIV-1 and simian immunodeficiency virus (SIV) cDNA synthesis, nuclear translocation, and infection efficiency. Marked IPO7 deficiency did not alter the rate or extent of HIV-1 or SIV cDNA synthesis or nuclear translocation. The infection efficiency of HIV-1 was similarly unaltered. Therefore, in natural, nondividing targets of HIV-1, IPO7 may be dispensable for infection
Modest but Reproducible Inhibition of Human Immunodeficiency Virus Type 1 Infection in Macrophages following LEDGFp75 Silencing
LEDGFp75 is a cellular protein which binds human immunodeficiency virus type 1 (HIV-1) integrase with high specificity and affinity but whose function in infection has not been defined. We infected LEDGFp75-deficient primary macrophages with wild-type HIV in order to assess potential infection phenotypes which would provide clues to LEDGFp75 function. Silencing of LEDGFp75 by 70 to 80% resulted in an average of 53% reduced infection of macrophages by HIV. Analysis of infection intermediates showed that integration, but not two-long-terminal-repeat (2LTR) circles or late cDNAs, was reduced up to 74% in LEDGFp75-deficient macrophages. Therefore, LEDGFp75 has a modest involvement in HIV-1 integration in macrophages
- …