479 research outputs found

    Quasinormal modes of slowly-rotating black holes in dynamical Chern-Simons gravity

    Get PDF
    The detection of gravitational waves from compact binary mergers by the LIGO/Virgo collaboration has, for the first time, allowed us to test relativistic gravity in its strong, dynamical and nonlinear regime, thus opening a new arena to confront general relativity (and modifications thereof) against observations. We consider a theory which modifies general relativity by introducing a scalar field coupled to a parity-violating curvature term known as dynamical Chern-Simons gravity. In this theory, spinning black holes are different from their general relativistic counterparts and can thus serve as probes to this theory. We study linear gravito-scalar perturbations of black holes in dynamical Chern-Simons gravity at leading-order in spin and (i) obtain the perturbed field equations describing the evolution of the perturbed gravitational and scalar fields, (ii) numerically solve these equations by direct integration to calculate the quasinormal mode frequencies for the dominant and higher multipoles and tabulate them, (iii) find strong evidence that these rotating black holes are linearly stable, and (iv) present general fitting functions for different multipoles for gravitational and scalar quasinormal mode frequencies in terms of spin and Chern-Simons coupling parameter. Our results can be used to validate the ringdown of small-spin remnants of numerical relativity simulations of black hole binaries in dynamical Chern-Simons gravity and pave the way towards future tests of this theory with gravitational wave ringdown observations

    Extreme Mass-Ratio Inspirals in the Effective-One-Body Approach: Quasi-Circular, Equatorial Orbits around a Spinning Black Hole

    Full text link
    We construct effective-one-body waveform models suitable for data analysis with LISA for extreme-mass ratio inspirals in quasi-circular, equatorial orbits about a spinning supermassive black hole. The accuracy of our model is established through comparisons against frequency-domain, Teukolsky-based waveforms in the radiative approximation. The calibration of eight high-order post-Newtonian parameters in the energy flux suffices to obtain a phase and fractional amplitude agreement of better than 1 radian and 1 % respectively over a period between 2 and 6 months depending on the system considered. This agreement translates into matches higher than 97 % over a period between 4 and 9 months, depending on the system. Better agreements can be obtained if a larger number of calibration parameters are included. Higher-order mass ratio terms in the effective-one-body Hamiltonian and radiation-reaction introduce phase corrections of at most 30 radians in a one year evolution. These corrections are usually one order of magnitude larger than those introduced by the spin of the small object in a one year evolution. These results suggest that the effective-one-body approach for extreme mass ratio inspirals is a good compromise between accuracy and computational price for LISA data analysis purposes.Comment: 21 pages, 8 figures, submitted to Phys. Rev.

    11th–12th Grade: English Level 2, Learning Packet #1 • Theme: U. S. Bill of Rights

    Get PDF
    Day 1 • What is the Constitution?, Your rights in the United States, Science: water cycle Day 2 • Your rights in the United States: journal, What is the Bill of Rights?, Bill of Rights chart, Condensation and precipitation Day 3 • Your rights in the United States: protest, Using your vocabulary, Opinion writing, Clouds Day 4 • Your rights in the United States: journal, Vocabulary review, States of water Day 5 • Your rights in the United States: draw a picture, How does your picture show equality?, Solids, liquids, and gas examples My Packet Journal Reference Sheet Answer Key

    11th–12th Grade: English Level 2, Learning Packet #3 • Theme: Susan B. Anthony

    Get PDF
    Day 1 • Journal: in your opinion, why is it important to vote?, Who was Susan B. Anthony?, Science: climate and biome where you\u27re from Day 2 • Journal: what are some things you are good at?, Past and present tense, Past and present tense: play, Science: weather near the equator, Biomes Day 3 • Journal: what was your favorite day of school?, Picture analysis, Science: climate far from the equator, Forests, Draw a picture Day 4 • Journal: what is a time you convinced someone to do something?, The 19th Amendment, Science: clothes near the equator, Grasslands, Deserts Day 5 • Journal: what are some things you want everyone to know about you?, Who should vote?, Do you think 16-year olds should vote?, Science: clothes far from the equator, Tundra References My Packet Journal Reference Shee

    The Role of Strong Gravity and the Nuclear Equation of State on Neutron-Star Common-Envelope Accretion

    Get PDF
    Common-envelope evolution is important in the formation of neutron star binaries within the isolated binary formation channel. As a neutron star inspirals within the envelope of a primary massive star, it accretes and spins up. Because neutron stars are in the strong-gravity regime, they have a substantial relativistic mass deficit, i.e., their gravitational mass is less than their baryonic mass. This effect causes some fraction of the accreted baryonic mass to convert into neutron star binding energy. The relativistic mass deficit also depends on the nuclear equation of state, since more compact neutron stars will have larger binding energies. We model the mass growth and spin-up of neutron stars inspiraling within common-envelope environments and quantify how different initial binary conditions and hadronic equations of state affect the post-common-envelope neutron star's mass and spin. From these models, we find that neutron star mass growth is suppressed by ≈15−30%\approx 15-30\%. We also find that for a given amount of accreted baryonic mass, more compact neutron stars will spin-up faster while gaining less gravitational mass, and vice versa. This work demonstrates that a neutron star's strong gravity and nuclear microphysics plays a role in neutron-star-common-envelope evolution, in addition to the macroscopic astrophysics of the envelope. Strong gravity and the nuclear equation of state may thus affect both the population properties of neutron star binaries and the cosmic double neutron star merger rate

    Gravitational Waves from Quasi-Circular Black Hole Binaries in Dynamical Chern-Simons Gravity

    Full text link
    Dynamical Chern-Simons gravity cannot be strongly constrained with current experiments because it reduces to General Relativity in the weak-field limit. This theory, however, introduces modifications in the non-linear, dynamical regime, and thus, it could be greatly constrained with gravitational waves from the late inspiral of black hole binaries. We complete the first self-consistent calculation of such gravitational waves in this theory. For favorable spin-orientations, advanced ground-based detectors may improve existing solar-system constraints by 6 orders of magnitude.Comment: 6 pages, 1 figure; errors corrected in Eqs. (8) and (9

    Asymptotically Matched Spacetime Metric for Non-Precessing, Spinning Black Hole Binaries

    Full text link
    We construct a closed-form, fully analytical 4-metric that approximately represents the spacetime evolution of non-precessing, spinning black hole binaries from infinite separations up to a few orbits prior to merger. We employ the technique of asymptotic matching to join a perturbed Kerr metric in the neighborhood of each spinning black hole to a near-zone, post-Newtonian metric farther out. The latter is already naturally matched to a far-zone, post-Minkowskian metric that accounts for full temporal retardation. The result is a 4-metric that is approximately valid everywhere in space and in a small bundle of spatial hypersurfaces. We here restrict our attention to quasi- circular orbits, but the method is valid for any orbital motion or physical scenario, provided an overlapping region of validity or buffer zone exists. A simple extension of such a metric will allow for future studies of the accretion disk and jet dynamics around spinning back hole binaries

    Metric of a tidally perturbed spinning black hole

    Full text link
    We explicitly construct the metric of a Kerr black hole that is tidally perturbed by the external universe in the slow-motion approximation. This approximation assumes that the external universe changes slowly relative to the rotation rate of the hole, thus allowing the parameterization of the Newman-Penrose scalar ψ0\psi_0 by time-dependent electric and magnetic tidal tensors. This approximation, however, does not constrain how big the spin of the background hole can be and, in principle, the perturbed metric can model rapidly spinning holes. We first generate a potential by acting with a differential operator on ψ0\psi_0. From this potential we arrive at the metric perturbation by use of the Chrzanowski procedure in the ingoing radiation gauge. We provide explicit analytic formulae for this metric perturbation in spherical Kerr-Schild coordinates, where the perturbation is finite at the horizon. This perturbation is parametrized by the mass and Kerr spin parameter of the background hole together with the electric and magnetic tidal tensors that describe the time evolution of the perturbation produced by the external universe. In order to take the metric accurate far away from the hole, these tidal tensors should be determined by asymptotically matching this metric to another one valid far from the hole. The tidally perturbed metric constructed here could be useful in initial data constructions to describe the metric near the horizons of a binary system of spinning holes. This perturbed metric could also be used to construct waveforms and study the absorption of mass and angular momentum by a Kerr black hole when external processes generate gravitational radiation.Comment: 17 pages, 3 figures. Final PRD version, minor typos, etc corrected. v3: corrected typo in Eq. (35) and (57

    Generic bounds on dipolar gravitational radiation from inspiralling compact binaries

    Full text link
    Various alternative theories of gravity predict dipolar gravitational radiation in addition to quadrupolar radiation. We show that gravitational wave (GW) observations of inspiralling compact binaries can put interesting constraints on the strengths of the dipole modes of GW polarizations. We put forward a physically motivated gravitational waveform for dipole modes, in the Fourier domain, in terms of two parameters: one which captures the relative amplitude of the dipole mode with respect to the quadrupole mode (α\alpha) and the other a dipole term in the phase (β\beta). We then use this two parameter representation to discuss typical bounds on their values using GW measurements. We obtain the expected bounds on the amplitude parameter α\alpha and the phase parameter β\beta for Advanced LIGO (AdvLIGO) and Einstein Telescope (ET) noise power spectral densities using Fisher information matrix. AdvLIGO and ET may at best bound α\alpha to an accuracy of ∼10−2\sim10^{-2} and ∼10−3\sim10^{-3} and β\beta to an accuracy of ∼10−5\sim10^{-5} and ∼10−6\sim10^{-6} respectively.Comment: Matches with the published versio
    • …
    corecore