252 research outputs found

    Magnetoelectric Coupling and Electric Control of Magnetization in Ferromagnet-Ferroelectric-Metal Superlattices

    Full text link
    Ferromagnet-ferroelectric-metal superlattices are proposed to realize the large room-temperature magnetoelectric effect. Spin dependent electron screening is the fundamental mechanism at the microscopic level. We also predict an electric control of magnetization in this structure. The naturally broken inversion symmetry in our tri-component structure introduces a magnetoelectric coupling energy of PM2P M^2. Such a magnetoelectric coupling effect is general in ferromagnet-ferroelectric heterostructures, independent of particular chemical or physical bonding, and will play an important role in the field of multiferroics.Comment: 5 pages including 3 figures and 1 tabl

    HLA-J, a Non-Pseudogene as a New Prognostic Marker for Therapy Response and Survival in Breast Cancer

    Get PDF
    The human leukocyte antigen (HLA) genes are cell-surface proteins, essential for immune cell interaction. HLA-G is known for their high immunosuppressive effect and its potential as predictive marker in breast cancer. However, nothing is known about the HLA-J and its immunosuppressive, prognostic and predictive features, as it is assumed to be a pseudogene by in silico sequence interpretation. HLA-J, ESR1, ERBB2, KRT5 and KRT20 mRNA expression were analysed in 29 fresh frozen breast cancer biopsies and their corresponding resectates obtained from patients treated with neoadjuvant chemotherapy (NACT). mRNA was analysed with gene specific TaqMan-based Primer/Probe sets and normalized to Calmodulin 2. All breast cancer samples did express HLA-J and frequently increased HLA-J mRNA levels after NACT. HLA-J mRNA was significantly associated with overexpression of the ESR1 mRNA status (Spearman ρ 0,5679; p = 0.0090) and KRT5 mRNA (Spearman ρ 0,6121; p = 0.0041) in breast cancer core biopsies and dominated in luminal B subtype. Kaplan Meier analysis revealed that an increase of HLA-J mRNA expression after NACT had worse progression free survival (p = 0,0096), indicating a counterreaction of tumor tissues presumably to prevent elimination by enhanced immune infiltration induced by NACT. This counterreaction is associated with worse prognosis. To our knowledge this is the first study identifying HLA-J as a new predictive marker in breast cancer being involved in immune evasion mechanisms.Humane Leukozyten-Antigene (HLA) sind Proteine auf der ZelloberflĂ€che, die essenziell fĂŒr die Immunzellinteraktion sind. HLA-G ist fĂŒr seine hohe immunosuppressive Wirkung sowie als potenzieller prĂ€dikativer Marker fĂŒr Brustkrebs bekannt. Dagegen ist kaum etwas ĂŒber HLA-J und seine immunosuppressiven, prognostischen und prĂ€diktiven Eigenschaften bekannt, da es basierend auf In-silico-Sequenzanalysen als „Pseudogen“ interpretiert wurde. Die Expression von HLA-J, ESR1, ERBB2, KRT5 und KRT20 mRNA wurde in 29 frisch gefrorenen Brustkrebsbiopsien analysiert und mit den klinisch-pathologischen Daten von Patientinnen, welche mit neoadjuvanter Chemotherapie behandelt wurden, verglichen. Die mRNA-Expression wurde mit genspezifischen TaqMan-basierten Primer/Probe-Sets analysiert und auf Calmodulin 2 normalisiert. Alle Gewebeproben von Patientinnen mit Brustkrebs exprimierten HLA-J, und der HLA-J-mRNA-Spiegel war nach NACT oft erhöht. In den Brustkrebsstanzbiopsien war die HLA-J-mRNA-Expression signifikant mit der Überexpression von ESR1-mRNA (Spearmans ρ 0,5679; p = 0,0090) und KRT5-mRNA (Spearmans ρ 0,6121; p = 0,0041) assoziiert und dominierte im Luminal-B-Subtyp. Die Kaplan-Meier-Analyse zeigte, dass ein Anstieg der HLA-J-mRNA-Expression nach NACT mit einem schlechteren progressionsfreien Überleben einhergeht (p = 0,0096), womöglich als Gegenreaktion des Tumorgewebes, um eine Eliminierung durch tumorinfiltrierende Lymphozyten, welche durch eine NACT induziert wurden, zu verhindern. Diese Gegenreaktion ist mit einer schlechteren Prognose assoziiert. Soweit uns bekannt, handelt es sich hierbei um die erste Studie, die HLA-J als neuen prĂ€diktiven Marker im Brustkrebs identifiziert hat und möglicherweise zur Immunevasion beitrĂ€gt

    Integration of Catalysis with Storage for the Design of Multi-Electron Photochemistry Devices for Solar Fuel

    Get PDF
    Decarbonization of the transport system and a transition to a new diversified energy system that is scalable and sustainable, requires a widespread implementation of carbon-neutral fuels. In biomimetic supramolecular nanoreactors for solar-to-fuel conversion, water-splitting catalysts can be coupled to photochemical units to form complex electrochemical nanostructures, based on a systems integration approach and guided by magnetic resonance knowledge of the operating principles of biological photosynthesis, to bridge between long-distance energy transfer on the short time scale of fluorescence, ~10−9 s, and short-distance proton-coupled electron transfer and storage on the much longer time scale of catalysis, ~10−3 s. A modular approach allows for the design of nanostructured optimized topologies with a tunneling bridge for the integration of storage with catalysis and optimization of proton chemical potentials, to mimic proton-coupled electron transfer processes in photosystem II and hydrogenase

    Common Variants of TLR1 Associate with Organ Dysfunction and Sustained Pro-Inflammatory Responses during Sepsis

    Get PDF
    Background: Toll-like receptors (TLRs) are critical components for host pathogen recognition and variants in genes participating in this response influence susceptibility to infections. Recently, TLR1 gene polymorphisms have been found correlated with whole blood hyper-inflammatory responses to pathogen-associated molecules and associated with sepsis-associated multiorgan dysfunction and acute lung injury (ALI). We examined the association of common variants of TLR1 gene with sepsis-derived complications in an independent study and with serum levels for four inflammatory biomarker among septic patients. Methodology/Principal Findings: Seven tagging single nucleotide polymorphisms of the TLR1 gene were genotyped in samples from a prospective multicenter case-only study of patients with severe sepsis admitted into a network of intensive care units followed for disease severity. Interleukin (IL)-1 b, IL-6, IL-10, and C-reactive protein (CRP) serum levels were measured at study entry, at 48 h and at 7th day. Alleles -7202G and 248Ser, and the 248Ser-602Ile haplotype were associated with circulatory dysfunction among severe septic patients (0.001<=p <= 0.022), and with reduced IL-10 (0.012<= p <=0.047) and elevated CRP (0.011<= p <=0.036) serum levels during the first week of sepsis development. Additionally, the -7202GG genotype was found to be associated with hospital mortality (p =0.017) and ALI (p =0.050) in a combined analysis with European Americans, suggesting common risk effects among studies Conclusions/Significance: These results partially replicate and extend previous findings, supporting that variants of TLR1 gene are determinants of severe complications during sepsis

    Nanocarbon-Based photovoltaics

    Get PDF
    Carbon materials are excellent candidates for photovoltaic solar cells: they are Earth-abundant, possess high optical absorption, and superior thermal and photostability. Here we report on solar cells with active layers made solely of carbon nanomaterials that present the same advantages of conjugated polymer-based solar cells - namely solution processable, potentially flexible, and chemically tunable - but with significantly increased photostability and the possibility to revert photodegradation. The device active layer composition is optimized using ab-initio density functional theory calculations to predict type-II band alignment and Schottky barrier formation. The best device fabricated is composed of PC70BM fullerene, semiconducting single-walled carbon nanotubes and reduced graphene oxide. It achieves a power conversion efficiency of 1.3% - a record for solar cells based on carbon as the active material - and shows significantly improved lifetime than a polymer-based device. We calculate efficiency limits of up to 13% for the devices fabricated in this work, comparable to those predicted for polymer solar cells. There is great promise for improving carbon-based solar cells considering the novelty of this type of device, the superior photostability, and the availability of a large number of carbon materials with yet untapped potential for photovoltaics. Our results indicate a new strategy for efficient carbon-based, solution-processable, thin film, photostable solar cells

    Electrical properties of ferroelectric YMnO3 films deposited on n-type Si (111) substrates

    Full text link
    YMnO3 thin films were grown on n - type Si substrate by nebulized spray pyrolysis in Metal - Ferroelectric - Semiconductor (MFS) configuration. The C-V characteristics of the film in MFS structure exhibit hysteretic behavior consistent with the polarization charge switching direction, with the memory window decreasing with increase in temperature. The density of interface states decreases with the increase in the annealing temperature. Mapping of the silicon energy band gap with the interface states has been carried out. The leakage current measured in the accumulation region, is lower in well-crystallized thin films and obeys a space- charge limited conduction mechanism. The calculated activation energy from the dc leakage current characteristics of Arhennius plot reveals that the activation energy correspond to the oxygen vacancy motionComment: 26 pages, 1 table, 8 figures, submitted to submitted to J. Phys. D; applied physics on 5th feb 200

    Mechanical ventilation modulates TLR4 and IRAK-3 in a non-infectious, ventilator-induced lung injury model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous experimental studies have shown that injurious mechanical ventilation has a direct effect on pulmonary and systemic immune responses. How these responses are propagated or attenuated is a matter of speculation. The goal of this study was to determine the contribution of mechanical ventilation in the regulation of Toll-like receptor (TLR) signaling and interleukin-1 receptor associated kinase-3 (IRAK-3) during experimental ventilator-induced lung injury.</p> <p>Methods</p> <p>Prospective, randomized, controlled animal study using male, healthy adults Sprague-Dawley rats weighing 300-350 g. Animals were anesthetized and randomized to spontaneous breathing and to two different mechanical ventilation strategies for 4 hours: high tidal volume (V<sub>T</sub>) (20 ml/kg) and low V<sub>T </sub>(6 ml/kg). Histological evaluation, TLR2, TLR4, <it>IRAK3 </it>gene expression, IRAK-3 protein levels, inhibitory kappa B alpha (IÎșBα), tumor necrosis factor-alpha (<it>TNF-α</it>) and interleukin-6 (<it>IL6</it>) gene expression in the lungs and TNF-α and IL-6 protein serum concentrations were analyzed.</p> <p>Results</p> <p>High V<sub>T </sub>mechanical ventilation for 4 hours was associated with a significant increase of TLR4 but not TLR2, a significant decrease of <it>IRAK3 </it>lung gene expression and protein levels, a significant decrease of IÎșBα, and a higher lung expression and serum concentrations of pro-inflammatory cytokines.</p> <p>Conclusions</p> <p>The current study supports an interaction between TLR4 and IRAK-3 signaling pathway for the over-expression and release of pro-inflammatory cytokines during ventilator-induced lung injury. Our study also suggests that injurious mechanical ventilation may elicit an immune response that is similar to that observed during infections.</p

    Polymorphisms of the IL1-Receptor Antagonist Gene (IL1RN) Are Associated With Multiple Markers of Systemic Inflammation

    Get PDF
    Circulating levels of acute phase reactant proteins such as plasma C-reactive protein (CRP) are likely influenced by multiple genes regulating the innate immune response

    Angiopoietin-Like4 Is a Novel Marker of COVID-19 Severity

    Get PDF
    IMPORTANCE: Vascular dysfunction and capillary leak are common in critically ill COVID-19 patients, but identification of endothelial pathways involved in COVID-19 pathogenesis has been limited. Angiopoietin-like 4 (ANGPTL4) is a protein secreted in response to hypoxic and nutrient-poor conditions that has a variety of biological effects including vascular injury and capillary leak. OBJECTIVES: To assess the role of ANGPTL4 in COVID-19-related outcomes. DESIGN SETTING AND PARTICIPANTS: Two hundred twenty-five COVID-19 ICU patients were enrolled from April 2020 to May 2021 in a prospective, multicenter cohort study from three different medical centers, University of Washington, University of Southern California and New York University. MAIN OUTCOMES AND MEASURES: Plasma ANGPTL4 was measured on days 1, 7, and 14 after ICU admission. We used previously published tissue proteomic data and lung single nucleus RNA (snRNA) sequencing data from specimens collected from COVID-19 patients to determine the tissues and cells that produce ANGPTL4. RESULTS: Higher plasma ANGPTL4 concentrations were significantly associated with worse hospital mortality (adjusted odds ratio per log CONCLUSIONS AND RELEVANCE: ANGPTL4 is expressed in pulmonary epithelial cells and fibroblasts and is associated with clinical prognosis in critically ill COVID-19 patients

    A genome-wide expression analysis identifies a network of EpCAM-induced cell cycle regulators

    Get PDF
    Expression of the epithelial cell adhesion molecule EpCAM is upregulated in a variety of carcinomas. This antigen is therefore explored in tumour diagnosis, and clinical trials have been initiated to examine EpCAM-based therapies. Notably, the possible intracellular effects and signalling pathways triggered by EpCAM-specific antibodies are unknown. Here, we show treatment of the mouse lung carcinoma cell line A2C12, of the human lung carcinoma cell line A549 and the human colorectal cell line Caco-2 with the monoclonal EpCAM antibody G8.8 to cause dose dependently an increase in cell proliferation, as determined by the MTS and the 5â€Č-bromo-2â€Č-deoxyuridine (BrdU) labelling assay. Furthermore, a genome-wide approach identified networks of regulated genes, most notably cell cycle regulators, upon treatment with an EpCAM-specific antibody. Indeed, changes in the expression of cell cycle regulators agreed well with the BrdU labelling data, and an analysis of differentially expressed genes revealed the processes with the strongest over-representation of modulated genes, for example, cell cycle, cell death, cellular growth and proliferation, and cancer. These data suggest that EpCAM is involved in signal transduction triggering several intracellular signalling pathways. Knowing EpCAM signalling pathways might lead to a reassessment of EpCAM-based therapies
    • 

    corecore