19 research outputs found

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - VIII. The totally-eclipsing double-giant system HD 187669

    Get PDF
    We present the first full orbital and physical analysis of HD 187669, recognized by the All-Sky Automated Survey (ASAS) as the eclipsing binary ASAS J195222-3233.7. We combined multi-band photometry from the ASAS and SuperWASP public archives and 0.41-m PROMPT robotic telescopes with our high-precision radial velocities from the HARPS spectrograph. Two different approaches were used for the analysis: 1) fitting to all data simultaneously with the WD code, and 2) analysing each light curve (with JKTEBOP) and RVs separately and combining the partial results at the end. This system also shows a total primary (deeper) eclipse, lasting for about 6 days. A spectrum obtained during this eclipse was used to perform atmospheric analysis with the MOOG and SME codes in order to constrain physical parameters of the secondary. We found that ASAS J195222-3233.7 is a double-lined spectroscopic binary composed of two evolved, late-type giants, with masses of M1=1.504±0.004M_1 = 1.504\pm0.004 and M2=1.505±0.004M_2=1.505\pm0.004 M_\odot, and radii of R1=11.33±0.28R_1 = 11.33\pm0.28 and R2=22.62±0.50R_2=22.62\pm0.50 R_\odot, slightly less metal abundant than the Sun, on a P=88.39P=88.39 d orbit. Its properties are well reproduced by a 2.38 Gyr isochrone, and thanks to the metallicity estimation from the totality spectrum and high precision in masses, it was possible to constrain the age down to 0.1 Gyr. It is the first so evolved galactic eclipsing binary measured with such a good accuracy, and as such is a unique benchmark for studying the late stages of stellar evolution.Comment: Accepted for publication in MNRAS. 12 pages, 7 figures, 9 tables (Table 1 available in the online version of the journal

    Orbital and physical parameters of eclipsing binaries from the ASAS catalogue - IV. A 0.61 + 0.45 M_sun binary in a multiple system

    Get PDF
    We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) database: ASAS J011328-3821.1 A - a member of a visual binary system with the secondary component separated by about 1.4 seconds of arc. The radial velocities were calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe/GIRAFFE, 3.9-m AAT/UCLES and 3.0-m Shane/HamSpec telescopes/spectrographs on the basis of the TODCOR technique and positions of H_alpha emission lines. For the analysis we used V and I band photometry obtained with the 1.0-m Elizabeth and robotic 0.41-m PROMPT telescopes, supplemented with the publicly available ASAS light curve of the system. We found that ASAS J011328-3821.1 A is composed of two late-type dwarfs having masses of M_1 = 0.612 +/- 0.030 M_sun, M_2 = 0.445 +/- 0.019 M_sun and radii of R_1 = 0.596 +/- 0.020 R_sun, R_2 = 0.445 +/- 0.024 R_sun, both show a substantial level of activity, which manifests in strong H_alpha and H_beta emission and the presence of cool spots. The influence of the third light on the eclipsing pair properties was also evaluated and the photometric properties of the component B were derived. Comparison with several popular stellar evolution models shows that the system is on its main sequence evolution stage and probably is more metal rich than the Sun. We also found several clues which suggest that the component B itself is a binary composed of two nearly identical ~0.5 M_sun stars.Comment: 12 pages, 7 figures, 7 tables, to appear in MNRA

    Orbital and physical parameters of eclipsing binaries from the All-Sky Automated Survey catalogue - IV. A 0.61 + 0.45 M⊙ binary in a multiple system

    Get PDF
    We present the orbital and physical parameters of a newly discovered low-mass detached eclipsing binary from the All-Sky Automated Survey (ASAS) data base: ASAS J011328–3821.1 A, which is a member of a visual binary system with the secondary component separated by about 1.4 arcsec. The radial velocities have been calculated from the high-resolution spectra obtained with the 1.9-m Radcliffe telescope/Grating Instrument for Radiation Analysis with a Fibre-Fed Echelle (GIRAFFE) spectrograph, the 3.9-m Anglo-Australian Telescope (AAT)/University College London Echelle Spectrograph (UCLES) and the 3.0-m Shane telescope/Hamilton Spectrograph (HamSpec) on the basis of the TODCOR technique and the positions of the Hα emission lines. For the analysis, we have used V- and I-band photometry obtained with the 1.0-m Elizabeth telescope and the 0.41-m Panchromatic Robotic Optical Monitoring and Polarimetry Telescopes (PROMPT), supplemented with the publicly available ASAS light curve of the system. We have found that ASAS J011328–3821.1 A is composed of two late-type dwarfs, which have masses of M1 = 0.612 ± 0.030 M⊙ and M2 = 0.445 ± 0.019 M⊙ and radii of R1 = 0.596 ± 0.020 R⊙ and R2 = 0.445 ± 0.024 R⊙. Both show a substantial level of activity, which manifests in strong Hα and Hβ emission and the presence of cool spots. The influence of the third light on the eclipsing pair properties has also been evaluated and the photometric properties of component B have been derived. A comparison with several popular stellar evolution models shows that the system is on its main-sequence evolution stage and that it is probably more metal-rich than the Sun. We have also found several clues to suggest that component B itself is a binary composed of two nearly identical ∼0.5-M⊙ stars

    A large topographic feature on the surface of the trans-Neptunian object (307261) 2002 MS4_4 measured from stellar occultations

    Full text link
    This work aims at constraining the size, shape, and geometric albedo of the dwarf planet candidate 2002 MS4 through the analysis of nine stellar occultation events. Using multichord detection, we also studied the object's topography by analyzing the obtained limb and the residuals between observed chords and the best-fitted ellipse. We predicted and organized the observational campaigns of nine stellar occultations by 2002 MS4 between 2019 and 2022, resulting in two single-chord events, four double-chord detections, and three events with three to up to sixty-one positive chords. Using 13 selected chords from the 8 August 2020 event, we determined the global elliptical limb of 2002 MS4. The best-fitted ellipse, combined with the object's rotational information from the literature, constrains the object's size, shape, and albedo. Additionally, we developed a new method to characterize topography features on the object's limb. The global limb has a semi-major axis of 412 ±\pm 10 km, a semi-minor axis of 385 ±\pm 17 km, and the position angle of the minor axis is 121 ^\circ ±\pm 16^\circ. From this instantaneous limb, we obtained 2002 MS4's geometric albedo and the projected area-equivalent diameter. Significant deviations from the fitted ellipse in the northernmost limb are detected from multiple sites highlighting three distinct topographic features: one 11 km depth depression followed by a 255+4^{+4}_{-5} km height elevation next to a crater-like depression with an extension of 322 ±\pm 39 km and 45.1 ±\pm 1.5 km deep. Our results present an object that is \approx138 km smaller in diameter than derived from thermal data, possibly indicating the presence of a so-far unknown satellite. However, within the error bars, the geometric albedo in the V-band agrees with the results published in the literature, even with the radiometric-derived albedo

    Laboratory evaluation of polymer modified bitumen with crumb rubber for use in high modulus asphalt concrete. Part 2, Tests on bituminous mixtures

    No full text
    W publikacji przedstawiono drugą część badań laboratoryjnych nad oceną przydatności polimeroasfaltu z dodatkiem gumy do zastosowania w betonie asfaltowym o wysokim module sztywności, tym razem w zakresie badań mieszanek mineralno-asfaltowych. Zaplanowano badania mieszanki ACWMS 16 z dwoma asfaltami: 25/55-60 CR i 25/55-60. Program pracy obejmował badania podstawowych właściwości oraz dodatkowe cechy z uwzględnieniem wpływu starzenia krótkoterminowego STOA i długoterminowego LTOA.Paper presents second part of laboratory evaluation on usability of PMB modified with crumb rubber in high modulus asphalt concrete. Two mixtures were tested: reference AC WMS 16 with PMB 25/55-60 and innovative mix AC WMS 16 with PMB 25/55-60 CR. Program of work covers all typical required tests and wide set of additional tests including resistance to low temperature cracking, fatigue, complex modulus and STOA and LTOA aging. Test results were subjected to detailed analysis, that compared those two mixtures

    Laboratory evaluation of polymer modified bitumen with crumb rubber for use in high modulus asphalt concrete. Part 1, Binder testing

    No full text
    Wykorzystanie materiałów z recyklingu opon samochodowych w nawierzchni drogowych jest przedmiotem badań naukowych od wielu lat. W rafinerii LOTOS Asfalt opracowano nowy typ polimeroasfaltu z dodatkiem granulatu gumowego. Niniejsza publikacja przedstawia wyniki prac badawczych prowadzonych w IBDiM. Celem było przeprowadzenie ocenę laboratoryjnej lepiszcza 25/55-60 CR i oceny możliwości jego zastosowania do betonu asfaltowego o wysokim module (ACWMS). Artykuł podzielony na dwie części przedstawiona ocenę laboratoryjną przydatności asfaltu 25/55-60 CR do zastosowania w betonie asfaltowym o wysokim module sztywności ACWMS. W części I przedstawiono badania lepiszczy, podczas gdy druga część dotyczy mieszanek ACWMS.The use of materials from recycled car tires in road pavements has been a subject of interest for scientific research for many years. A new type of polymer modified binder with crumb rubber was developed by the refinery of LOTOS Asphalt. This publication presents the results of research work carried out in IBDiM (Road and Bridge Research Institute). The aim was to perform laboratory evaluation of a binder 25/55-60 CR and assess the possibility of its application for high modulus asphalt concrete (ACWMS). Paper divided in two parts presents laboratory evaluation on usability of PMB modified with crumb rubber in high modulus asphalt concrete. Part I focuses on binder tests is devoted to binder tests, while the second part deals with bituminous mix
    corecore