150 research outputs found

    Gravity localization on thick branes: a numerical approach

    Full text link
    We introduce a numerical procedure to investigate the spectrum of massive modes and its contribution for gravity localization on thick branes. After considering a model with an analytically known Schroedinger potential, we present the method and discuss its applicability. With this procedure we can study several models even when the Schroedinger potential is not known analytically. We discuss both the occurrence of localization of gravity and the correction to the Newtonian potential given by the massive modes.Comment: 22 pages, 12 figure

    Using entanglement improves precision of quantum measurements

    Full text link
    We show how entanglement can be used to improve the estimation of an unknown transformation. Using entanglement is always of benefit, in improving either the precision or the stability of the measurement. Examples relevant for applications are illustrated, for either qubits and continuous variable

    Microalgae Lipid Characterization

    Get PDF
    To meet the growing interest of utilizing microalgae biomass in the production of biofuels and nutraceutical and pharmaceutical lipids, we need suitable analytical methods and a comprehensive database for their lipid components. The objective of the present work was to demonstrate methodology and provide data on fatty acid composition, lipid class content and composition, characteristics of the unsaponifiables, and type of chlorophylls of five microalgae. Microalgae lipids were fractionated into TAG, FFA, and polar lipids using TLC, and the composition of fatty acids in total lipids and in each lipid class, hydrocarbons, and sterols were determined by GC-MS. Glyco- and phospholipids were profiled by LC/ESI-MS. Chlorophylls and their related metabolites were qualified by LC/APCI-MS. The melting and crystallization profiles of microalgae total lipids and their esters were analyzed by DSC to evaluate their potential biofuel applications. Significant differences and complexities of lipid composition among the algae tested were observed. The compositional information is valuable for strain selection, downstream biomass fractionation, and utilization

    In-situ yeast fermentation to enhance bioconversion of coconut endosperm waste into larval biomass of hermetia illucens: statistical augmentation of larval lipid content

    Get PDF
    The aim of this study was to spur the lipid accumulation by larvae of Hermetia illucens or black soldier fly (BSFL) via feeding with yeast fermented medium. The Saccharomyces cerevisiae, a single cell yeast, was introduced at different concentrations (0.02, 0.1, 0.5, 1.0, 2.5 wt %) to execute an in-situ fermentation on coconut endosperm waste. The rearing of BSFL was started simultaneously and the rearing was stopped once the BSFL reached the fifth instar. With the increasing of yeast concentration, the rearing duration of BSFL was shortened from 15.5 to 13.5 days. Moreover, it was found that at 0.5 to 1.0 wt % yeast concentration, the lipid yield and lipid productivity of BSFL were statistically enhanced to their highest peaks, namely, at 49.4% and 0.53 g/day, respectively. With regard to biodiesel composition, BSFL-derived biodiesel contained mainly C12:0, C14:0, C16:0 and C18:1. The higher amount of saturated fatty acids could strengthen the oxidative stability biodiesel produced as compared with non-edible oils or microalgal lipid. At last, the addition of yeast was also found to improve the waste reduction index of coconut endosperm waste (CEW) from 0.31 to 0.40 g/day, heralding the capability of BSFL to valorize organic waste via bioconversion into its biomass to serve as a feedstock for biodiesel production

    Automatic Morphological Subtyping Reveals New Roles of Caspases in Mitochondrial Dynamics

    Get PDF
    Morphological dynamics of mitochondria is associated with key cellular processes related to aging and neuronal degenerative diseases, but the lack of standard quantification of mitochondrial morphology impedes systematic investigation. This paper presents an automated system for the quantification and classification of mitochondrial morphology. We discovered six morphological subtypes of mitochondria for objective quantification of mitochondrial morphology. These six subtypes are small globules, swollen globules, straight tubules, twisted tubules, branched tubules and loops. The subtyping was derived by applying consensus clustering to a huge collection of more than 200 thousand mitochondrial images extracted from 1422 micrographs of Chinese hamster ovary (CHO) cells treated with different drugs, and was validated by evidence of functional similarity reported in the literature. Quantitative statistics of subtype compositions in cells is useful for correlating drug response and mitochondrial dynamics. Combining the quantitative results with our biochemical studies about the effects of squamocin on CHO cells reveals new roles of Caspases in the regulatory mechanisms of mitochondrial dynamics. This system is not only of value to the mitochondrial field, but also applicable to the investigation of other subcellular organelle morphology

    Inhibition of cell motility by troglitazone in human ovarian carcinoma cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Troglitazone (TGZ) is a potential anticancer agent. Little is known about the effect of this agent on cancer cell migration.</p> <p>Methods</p> <p>Human ovarian carcinoma cell line, ES-2 cells were treated with various concentrations of TGZ. Cell migration was evaluated by wound-healing and Boyden chamber transwell experiments. PPARγ expression was blocked by PPARγ small interfering RNA. The effects of TGZ on phosphorylation of FAK, PTEN, Akt were assessed by immunoblotting using phospho-specific antibodies. The cellular distribution of paxillin, vinculin, stress fiber and PTEN was assessed by immunocytochemistry.</p> <p>Results</p> <p>TGZ dose- and time-dependently impaired cell migration through a PPARγ independent manner. TGZ treatment impaired cell spreading, stress fiber formation, tyrosine phosphorylation of focal adhesion kinase (FAK), and focal adhesion assembly in cells grown on fibronectin substratum. TGZ also dose- and time-dependently suppressed FAK autophosphorylation and phosphorylation of the C-terminal of PTEN (a phosphatase). At concentration higher than 10 μM, TGZ caused accumulation of PTEN in plasma membrane, a sign of PTEN activation.</p> <p>Conclusion</p> <p>These results indicate that TGZ can suppress cultured ES-2 cells migration. Our data suggest that the anti-migration potential of TGZ involves in regulations of FAK and PTEN activity.</p

    Sustainability of biohydrogen as fuel: Present scenario and future perspective

    Get PDF

    Doing race: how secondary school pupils in mainly white schools construct 'race'

    Get PDF
    This article examines how ‘race’ impacts upon the lives of young people who attend secondary schools in a mainly white British area of the United Kingdom. Schools Stand up 2 Racism (SSu2R), a Big Lottery research project, brought together a community partner – the Cheshire, Halton and Warrington Race and Equality Centre – and a team from Manchester Metropolitan University to investigate racism in Cheshire secondary schools. In an area where the population is over 93% ‘white British’, the sense that ‘there's nothing to be racist about in this school’ (Year 8 pupil) was found to be common. The three-year SSu2R study used a multimethod approach to study how students ‘do race’ in these schools, where the silent advocacy of a ‘colour-blind’ approach is promulgated through the popular rhetoric of ‘everyone is unique’ and ‘we should treat everyone the same’. Race is tackled only tangentially through the curriculum, accompanied by silences that close down discussion. Perhaps unsurprisingly given this context, forms of everyday racism are endemic and yet mostly unnoticed by staff or students. The article uses Bourdieu's concepts of ‘doxa’ and ‘the game’ to examine the nature of this silence

    AI is a viable alternative to high throughput screening: a 318-target study

    Get PDF
    : High throughput screening (HTS) is routinely used to identify bioactive small molecules. This requires physical compounds, which limits coverage of accessible chemical space. Computational approaches combined with vast on-demand chemical libraries can access far greater chemical space, provided that the predictive accuracy is sufficient to identify useful molecules. Through the largest and most diverse virtual HTS campaign reported to date, comprising 318 individual projects, we demonstrate that our AtomNet® convolutional neural network successfully finds novel hits across every major therapeutic area and protein class. We address historical limitations of computational screening by demonstrating success for target proteins without known binders, high-quality X-ray crystal structures, or manual cherry-picking of compounds. We show that the molecules selected by the AtomNet® model are novel drug-like scaffolds rather than minor modifications to known bioactive compounds. Our empirical results suggest that computational methods can substantially replace HTS as the first step of small-molecule drug discovery
    corecore