16,373 research outputs found

    Floor-fractured crater models of the Sudbury structure, Canada

    Get PDF
    The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury

    Variation in multiring basic structures as a function of impact angle

    Get PDF
    Previous studies have demonstrated that the impact process in the laboratory varies as a function of impact angle. This variation is attributed to changes in energy partitioning and projectile failure during the impact and, in simple craters, produces a sequence of progressively smaller and more asymmetric crater forms as impact angle decreases from approximately 20 degrees. Variations in impact angle can produce differences in the appearance of multiring impact basins. Comparisons of Orientale to the more oblique impact structure at Crisium also suggests that these differences primarily reflect the degree of cavity collapse. The relative changes in massif ring topography, basin scarp relief, and the distribution of peripheral mare units are consistent with a reduction in degree of cavity collapse with decreasing impact angle. The prominent uprange basin scarps and the restriction of tectonically derived peripheral mare units along uprange ring structures also may indicate an uprange enhancement of failure during cavity collapse. Finally, although basin ring faults appear to be preferred pathways for mare volcanism, fault-controlled peripheral mare volcanism occurs most readily uprange of an oblique impact; elsewhere such volcanism apparently requires superposition of an impact structure on the ring fault

    Floor-fractured crater models for igneous crater modification on Venus

    Get PDF
    Although crater modification on the Earth, Moon, and Mars results from surface erosion and crater infilling, a significant number of craters on the Moon also exhibit distinctive patterns of crater-centered fracturing and volcanism that can be modeled as the result of igneous crater modification. Here, we consider the possible effects of Venus surface conditions on this model, describe two examples of such crater modification, and then briefly discuss the constraints these craters place on conditions at depth

    Igneous intrusion models for floor fracturing in lunar craters

    Get PDF
    Lunar floor-fractured craters are primarily located near the maria and frequently contain ponded mare units and dark mantling deposits. Fracturing is confined to the crater interior, often producing a moat-like feature near the floor edge, and crater depth is commonly reduced by uplift of the crater floor. Although viscous relaxation of crater topography can produce such uplift, the close association of modification with surface volcanism supports a model linking floor fracture to crater-centered igneous intrusions. The consequences of two intrusion models for the lunar interior are quantitatively explored. The first model is based on terrestrial laccoliths and describes a shallow intrusion beneath the crater. The second model is based on cone sheet complexes where surface deformation results from a deeper magma chamber. Both models, their fit to observed crater modifications and possible implications for local volcanism are described

    Liquid n-hexane condensed in silica nanochannels: A combined optical birefringence and vapor sorption isotherm study

    Full text link
    The optical birefringence of liquid n-hexane condensed in an array of parallel silica channels of 7nm diameter and 400 micrometer length is studied as a function of filling of the channels via the vapor phase. By an analysis with the generalized Bruggeman effective medium equation we demonstrate that such measurements are insensitive to the detailed geometrical (positional) arrangement of the adsorbed liquid inside the channels. However, this technique is particularly suitable to search for any optical anisotropies and thus collective orientational order as a function of channel filling. Nevertheless, no hints for such anisotropies are found in liquid n-hexane. The n-hexane molecules in the silica nanochannels are totally orientationally disordered in all condensation regimes, in particular in the film growth as well as in the the capillary condensed regime. Thus, the peculiar molecular arrangement found upon freezing of liquid n-hexane in nanochannel-confinement, where the molecules are collectively aligned perpendicularly to the channels' long axes, does not originate in any pre-alignment effects in the nanoconfined liquid due to capillary nematization.Comment: 7 pages, 5 figure

    Studies in matter antimatter separation and in the origin of lunar magnetism

    Get PDF
    A progress report, covering lunar and planetary research is introduced. Data cover lunar ionospheric models, lunar and planetary geology, and lunar magnetism. Wind tunnel simulations of Mars aeolian problems and a comparative study of basaltic analogs of Lunar and Martial volcanic features was discussed

    Navigation/traffic control satellite mission study. Volume 2 - Systems analyses

    Get PDF
    Systems analysis of spacecraft network for transoceanic traffic contro

    Statistical properties of a linear stochastic system

    Get PDF
    In this paper a random linear system of the form of y(t; ω = ∫t∁K(t, τ; ω)x(τ; ω)dr is studied, where the kernel is a stochastic process defined on a probability space. The concept of the modified characteristic function for the output process is introduced. These characteristic functions are used to identify the distribution of the output process over certain subsets of the probability space, Ω, in order to study the statistical properties of the process. Several examples are given to illustrate the usefulness of the resulting theory. These results extend the previous theory of random linear systems, in that until now, the kernel was deterministic in nature
    corecore